精英家教网 > 初中数学 > 题目详情
如图,在.点是线段边上的一动点(不含两端点),连结,作,交线段于点
  
(1)求证:
(2)设,,请写之间的函数关系式,并求的最小值。
(3)点在运动的过程中,能否构成等腰三角形?若能,求出的长;若不能,请说明理由。
(1)证明两个三角形相似,可以证明两个角相等。
(2)当有最小值是
(3)

试题分析:(1)证明:


                   

                      
                    



)    
         
∴当有最小值是     
(3)∵的外角




时,

                       
时,



即:
                        
为等腰三角形时,
点评:此题比较综合,难度相对较难。动点问题在中考中,是压轴题,是出卷者区分优秀学生的题目,学生可以在平时的练习加强训练中,提升解此类题的能力。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).
(1)直接用含t的代数式分别表示:QB= _________ ,PD= _________ 
(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;
(3)如图2,在整个运动过程中,求出线段PQ中点M所经过的路径长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在一张比例尺为1:10000的地图上,我校的周长为18cm,则我校的实际周长为          

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,边长12的正方形ABCD中,有一个小正方形EFGH,其中E、F、G分别在AB、BC、FD上. 若BF=3,则小正方形的边长为

A.        B.        C. 5      D. 6

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,等腰三角形ABC中,若∠A=∠B=∠DPE

(1)求证:△APD∽△BEP;
(2)若,试求出AD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题


【问题提出】我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小,即要比较代数式M、N的大小,只要作出它们的差M-N,若M-N>0,则M>N;若M-N=0,则M=N;若M-N<0,则M<N.
【问题解决】如图1,把边长为a+b(a≠b)的大正方形分割成两个边长分别是a、b的小正方形及两个矩形,试比较两个小正方形面积之和M与两个矩形面积之和N的大小.

解:由图可知:

∵a≠b,∴>0.
∴M-N>0.∴M>N.
【类比应用】(1)已知:多项式M =2a2-a+1 ,N =a2-2a .
试比较M与N的大小.
(2)已知:如图2,锐角△ABC (其中BC为a ,AC为 b,
AB为c)三边满足a <b < c ,现将△ABC 补成长方形,
使得△ABC的两个顶点为长方形的两个端点,第三个顶点落
在长方形的这一边的对边上。
 
①这样的长方形可以画     个;
②所画的长方形中哪个周长最小?为什么?
【拓展延伸】 已知:如图,锐角△ABC (其中BC为a,AC为b,AB为c)三边满足a <b < c ,画其BC边上的内接正方形EFGH , 使E、F两点在边BC上,G、H分别在边AC、AB上,同样还可画AC、AB边上的内接正方形,问哪条边上的内接正方形面积最大?为什么?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,△ABC中,P是AB边上的一点,连结CP.添加一个条件使△ACP与△ABC相似.下列添加的条件中不正确的是(     )
A.∠APC=∠ACBB.∠ACP=∠BC.AC2=AP·ABD.AC:PC=AB:BC

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列阴影三角形分别在小正方形组成的网格中,则与左图中的三角形相似的是(    )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在等边△ABC中,D、E、F分别是BC,AC,AB上的点,且DE⊥AC,EF⊥AB,FD⊥BC,则△DEF与△ABC的面积之比等于(  )

A.1:3           B.2:3            C.:2          D.:3

查看答案和解析>>

同步练习册答案