精英家教网 > 初中数学 > 题目详情
P为⊙O外一点,PO交⊙O于B,PB=OB,PA为⊙O的切线,则∠P=(  )
分析:首先连接OA,由PA为⊙O的切线,易得OA⊥AP,又由PB=OB,则可得OP=2OA,继而求得答案.
解答:解:连接OA,
∵PA为⊙O的切线,
∴OA⊥PA,
∵OA=OB,PB=OB,
∴OP=2OA,
∴sin∠P=
OA
OP
=
1
2

∴∠P=30°.
故选A.
点评:此题考查了切线的性质以及特殊角的三角函数值.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知P为⊙O外一点,PO交⊙O于点A,割线PBC交⊙O于点B、C,且PB=BC,若OA=7,PA=4,则PB的长等于(  )
A、6
2
B、
14
C、6
D、2
7

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•潮安县模拟)P为⊙O外一点,PO及其延长线分别交⊙O于C和Q,弦AB⊥OP于D,若∠DAC=∠CAP,
求证:PA为⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)观察发现

如图1,⊙O的半径为1,点P为⊙O外一点,PO=2,在⊙O上找一点M,使得PM最长.
作法如下:作射线PO交⊙O于点M,则点M就是所求的点,此时PM=
3
3

请说明PM最长的理由.
(2)实践运用
如图2,在等边三角形 ABC中,AB=2,以AB为斜边作直角三角形AMB,使CM最长.
作法如下:以AB为直径画⊙O,作射线CO交⊙O右侧于点M,则△AMB即为所求.请按上述方法用三角板和圆规画出图形,并求出CM的长度.
(3)拓展延伸
如图3,在周长为m的任意形状的△ABC中,分别以AB、AC为斜边作直角三角形AMB,直角三角形ANC,使得线段MN最长,用尺规画出图形,此时MN=
0.5m
0.5m
.(保留作图痕迹)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点P为⊙O外一点,PO及延长线分别交⊙O于A、B,过点P作一直线交⊙O于M、N(异于A、B).求证:
(1)AB>MN;
(2)PB>PN;
(3)PA<PM.

查看答案和解析>>

同步练习册答案