【题目】如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.
(1)求证:DH是圆O的切线;
(2)若,求证:A为EH的中点.
(3)若EA=EF=1,求圆O的半径.
【答案】(1)证明见解析(2)证明见解析(3)
【解析】分析:(1)由角的关系易证OD//AC,已知即证
(2)由OD//AC,可证根据“相似三角形的对应边成比例”易得, 设 证明 是等腰三角形,表示出即可证明.
(3)通过等量关系表示出边的长度,由可得对应边的比例关系的方程,求解即可.
详解:(1)连接OD,如图1,
∵在⊙O中,
∴
∵
∴
∴
∴OD//AC,
∵
∴
∴
∴
∴DH是圆O的切线;
(2)∵
∴
∴,
设
连接AD,
∵AB是直径,
∴∠ADB=90°,即
∵
∴D是BC的中点,
∴OD是△ABC的中位线,
∴OD∥AC,
∴
∵在⊙O中,
∴
∴是等腰三角形,
∵
∴
∵A在EH上且,
∴A为EH的中点.
(3)如图2,设⊙O的半径为r,即
∵
∴
∵OD∥EC,
∴
则
∴
∴
∴
在⊙O中,∵
∴
∴,是等腰三角形,
∴
∴
∵
∴
解得: (不合题意,舍去),
综上所述,⊙O的半径为.
科目:初中数学 来源: 题型:
【题目】如图,函数y1=-x+4的图象与函数y2= (x>0)的图象交于 A(a,1)、B(1,b)两点.
(1)求a,b及y2的函数关系式;
(2)观察图象,当x>0时,比较y1与y2大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AD是BC边上的中线,AE是BC边上的高.
(1)若∠ACB=100°,求∠CAE的度数;
(2)若S△ABC=12,CD=4,求高AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线与x轴的交点坐标分别为A(1,0),B(x2,0)(点B在点A的右侧),其对称轴是x=3,该函数有最小值是﹣2.
(1)求二次函数解析式;
(2)在图1上作平行于x轴的直线,交抛物线于C(x3,y3),D(x4,y4),求x3+x4的值;
(3)将(1)中函数的部分图象(x>x2)向下翻折与原图象未翻折的部分组成图象“G”,如图2,在(2)中平行于x轴的直线取点E(x5,y5)、(x4<x5),结合函数图象求x3+x4+x5的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,E是AD边上一点,PQ垂直平分BE,分别交AD、BE、BC于点P、O、Q,连接BP、QE
(1)求证:四边形BPEQ是菱形:
(2)若AB=6,F是AB中点,OF=4,求菱形BPEQ的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△PDC是⊙O的内接三角形,CP=CD,若将△PCD绕点P顺时针旋转,当点C刚落在⊙O上的A处时,停止旋转,此时点D落在点B处.
(1)求证:PB与⊙O相切;
(2)当PD=2,∠DPC=30°时,求⊙O的半径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在△ABC中,已知AD是角平分线,∠B=66°,∠C=54°.
(1)求∠ADB的度数;
(2)若DE⊥AC于点E,求∠ADE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.
(1)如图1,在△ABC中,AB=AC,点D在AC边上,且AD=BD=BC,求∠A的大小;
(2)在图1中过点C作一条线段CE,使BD,CE是△ABC的三分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;
(3)在△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,请直接写出∠C所有可能的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】请在下列横线上注明理由.
如图,在中,点,,在边上,点在线段上,若,,点到和的距离相等.求证:点到和的距离相等.
证明:∵(已知),
∴(______),
∴(______),
∵(已知),
∴(______),
∵点到和的距离相等(已知),
∴是的角平分线(______),
∴(角平分线的定义),
∴(______),
即平分(角平分线的定义),
∴点到和的距离相等(______).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com