精英家教网 > 初中数学 > 题目详情
探索发现:
(1)如图1,在△ABC中,AD是BC边上的中线,若△ABC的面积为S,则△ACD的面积为
 

联系拓展:
(2)在图2中,E、F分别是?ABCD的边AB、BC的中点,若?ABCD的面积为S,求四边形BEDF的面积?并说明理由.
(3)在图3中,E、F分别是?ABCD的边AB、BC上的点,且AE=
1
3
AB,BF=
1
3
BC,若?ABCD的面积为S,则四边形BEDF的面积为
 

解决问题:
(4)如图4中,矩形ABCD中,AB=nBC(n为常数,且n>0).E是AB边上的一个动点,F是BC边上的一个动点.若在两点运动的过程中,四边形BEDF的面积始终等于矩形面积的
1
2
,请探究线段AE、BF应满足怎样的数量关系,并说明理由.
精英家教网
分析:(1)从阴影部分底边是三角形ABC第边的一半而解得;
(2)连接BD,从阴影部分占所在三角形面积多少算起而得;
(3)连接BD,同理(2)而解得;
(4)连接BD,由题意列式子从而得.
解答:解:(1)∵AD为三角形ABC的底边中线,
∴DC为BC的一半,
由图可知△ABC与△ADC同高,
又知△ABC面积为S,
∴三角形ADC面积为
1
2
S

故填
1
2
S


(2)连接BD,
∵E,F分别为边AB,BC的中点,
∴同理(1)可知△BED面积为△ABD面积的一半,△BDF面积为△BDC面积的一半,
又∵?ABCD面积为S,
∴四边形BEDF面积为
1
2
S

精英家教网
(3)连接BD,
∵AE=
1
3
AB
,BF=
1
3
BC

∴计算同理于(2),
∵?ABCD的面积为S,
∴四边形BEDF为
1
2
S

故填
1
2
S


(4)连接BD,
由题意四边形BEDF的面积始终等于矩形面积的一半,
即AB•BC=2(
1
2
BE•AD+
1
2
BF•AB),
∵AB=nBC,
∴AB•BC=2(
1
2
BE•
1
n
AB+
1
2
BF•AB)=BE•
1
n
AB+BF•AB,
∴BC=BE•
1
n
+BF,
1
n
AB=
1
n
EB+BF,
∴AE=nBF.
点评:本题考查三角形面积,以及把平行四边形面积转化为三角形面积来求,从而解得.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

探索发现:
(1)如图1,在△ABC中,AD是BC边上的中线,若△ABC的面积为S,则△ACD的面积为______.
联系拓展:
(2)在图2中,E、F分别是?ABCD的边AB、BC的中点,若?ABCD的面积为S,求四边形BEDF的面积?并说明理由.
(3)在图3中,E、F分别是?ABCD的边AB、BC上的点,且AE=数学公式AB,BF=数学公式BC,若?ABCD的面积为S,则四边形BEDF的面积为______.
解决问题:
(4)如图4中,矩形ABCD中,AB=nBC(n为常数,且n>0).E是AB边上的一个动点,F是BC边上的一个动点.若在两点运动的过程中,四边形BEDF的面积始终等于矩形面积的数学公式,请探究线段AE、BF应满足怎样的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年河北省保定市中考数学二模试卷(解析版) 题型:解答题

探索发现:
(1)如图1,在△ABC中,AD是BC边上的中线,若△ABC的面积为S,则△ACD的面积为______.
联系拓展:
(2)在图2中,E、F分别是?ABCD的边AB、BC的中点,若?ABCD的面积为S,求四边形BEDF的面积?并说明理由.
(3)在图3中,E、F分别是?ABCD的边AB、BC上的点,且AE=AB,BF=BC,若?ABCD的面积为S,则四边形BEDF的面积为______.
解决问题:
(4)如图4中,矩形ABCD中,AB=nBC(n为常数,且n>0).E是AB边上的一个动点,F是BC边上的一个动点.若在两点运动的过程中,四边形BEDF的面积始终等于矩形面积的,请探究线段AE、BF应满足怎样的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2011年安徽省淮北市濉溪县中考数学二模试卷(解析版) 题型:解答题

探索发现:
(1)如图1,在△ABC中,AD是BC边上的中线,若△ABC的面积为S,则△ACD的面积为______.
联系拓展:
(2)在图2中,E、F分别是?ABCD的边AB、BC的中点,若?ABCD的面积为S,求四边形BEDF的面积?并说明理由.
(3)在图3中,E、F分别是?ABCD的边AB、BC上的点,且AE=AB,BF=BC,若?ABCD的面积为S,则四边形BEDF的面积为______.
解决问题:
(4)如图4中,矩形ABCD中,AB=nBC(n为常数,且n>0).E是AB边上的一个动点,F是BC边上的一个动点.若在两点运动的过程中,四边形BEDF的面积始终等于矩形面积的,请探究线段AE、BF应满足怎样的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2011年河北省邢台市隆尧县尧山中学中考数学模拟试卷(解析版) 题型:解答题

(2011•濉溪县二模)探索发现:
(1)如图1,在△ABC中,AD是BC边上的中线,若△ABC的面积为S,则△ACD的面积为______.
联系拓展:
(2)在图2中,E、F分别是?ABCD的边AB、BC的中点,若?ABCD的面积为S,求四边形BEDF的面积?并说明理由.
(3)在图3中,E、F分别是?ABCD的边AB、BC上的点,且AE=AB,BF=BC,若?ABCD的面积为S,则四边形BEDF的面积为______.
解决问题:
(4)如图4中,矩形ABCD中,AB=nBC(n为常数,且n>0).E是AB边上的一个动点,F是BC边上的一个动点.若在两点运动的过程中,四边形BEDF的面积始终等于矩形面积的,请探究线段AE、BF应满足怎样的数量关系,并说明理由.

查看答案和解析>>

同步练习册答案