【题目】如图,已知抛物线经过的三个顶点,其中点,点,轴,点是直线下方抛物线上的动点.
(1)求抛物线的解析式;
(2)过点且与轴平行的直线与直线、分别交与点、,当四边形的面积最大时,求点的坐标;
(3)当点为抛物线的顶点时,在直线上是否存在点,使得以、、为顶点的三角形与相似,若存在,直接写出点的坐标;若不存在,请说明理由.
【答案】(1);(2);(3)存在, ,
【解析】
(1)用待定系数法求出抛物线解析式即可;
(2)设点P(m,),表示出PE=,再用S四边形AECP=S△AEC+S△APC=AC×PE,建立函数关系式,求出最值即可;
(3)先判断出PF=CF,再得到∠PCA=∠EAC,以C、P、Q为顶点的三角形与△ABC相似,分两种情况计算即可.
(1)∵点,在抛物线上,
∴,
∴,
∴抛物线的解析式为,
(2)∵AC∥x轴,A(0,3)
∴=3,
∴x1=6,x2=0,
∴点C的坐标(8,3),
∵点,,
求得直线AB的解析式为y=x+3,
设点P(m,)∴E(m,m+3)
∴PE=m+3()=,
∵AC⊥EP,AC=8,
∴S四边形AECP
=S△AEC+S△APC
=AC×EF+AC×PF
=AC×(EF+PF)
=AC×PE
=×8×()
=m212m
=(m+6)2+36,
∵8<m<0
∴当m=6时,四边形AECP的面积的最大,此时点P(6,0);
(3)∵=,
∴P(4,1),
∴PF=yFyP=4,CF=xFxC=4,
∴PF=CF,
∴∠PCF=45°
同理可得:∠EAF=45°,
∴∠PCF=∠EAF,
∴在直线AC上存在满足条件的Q,
设Q(t,3)且AB==12,AC=8,CP=,
∵以C、P、Q为顶点的三角形与△ABC相似,
①当△CPQ∽△ABC时,
∴,
∴,
∴t=或t=(不符合题意,舍)
∴Q(,3)
②当△CQP∽△ABC时,
∴,
∴,
∴t=4或t=20(不符合题意,舍)
∴Q(4,3)
综上,存在点 .
科目:初中数学 来源: 题型:
【题目】《代数学》中记载,形如x2+10x=39的方程,求正数解的几何方法是:“如图1,先构造一个面积为x2的正方形,再以正方形的边长为一边向外构造四个面积为x的矩形,得到大正方形的面积为39+25=64,则该方程的正数解为8-5=3”,小聪按此方法解关于x的方程x2+6x+m=0时,构造出如图2所示的图形,己知阴影部分的面积为36,则该方程的正数解为( )
A.6B.3-3C.3-2D.3-
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现如今,“垃圾分类”意识已深入人心,垃圾一般可分为:可回收物、厨余垃圾、有害垃圾、其它垃圾.其中甲拿了一袋垃圾,乙拿了两袋垃圾.
(1)直接写出甲所拿的垃圾恰好是“厨余垃圾”的概率;
(2)求乙所拿的两袋垃圾不同类的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在边长为4正方形OABC中,OB为对角线,过点O作OB的垂线.以点O为圆心,r为半径作圆,过点C做⊙O的两条切线分别交OB垂线、BO延长线于点D、E,CD、CE分别切⊙O于点P、Q,连接AE.
(1)请先在一个等腰直角三角形内探究tan22.5°的值;
(2)求证:
①DO=OE;
②AE=CD,且AE⊥CD.
(3)当OA=OD时:
①求∠AEC的度数;
②求r的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).
(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是 ;
(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是 ;
(3)△A2B2C2的面积是 平方单位.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知反比例函数的图像与一次函数的图象相交于点A(1,4)和点B(m,-2).
(1)求反比例函数和一次函数的解析式;
(2)求ΔAOC的面积;
(3)直接写出时的x的取值范围 (只写答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,海南省三沙市一艘海监船某天在黄岩岛P附近海域由南向北巡航,某一时刻航行到A处,测得该岛在北偏东30°方向,海监船以20海里/时的速度继续航行,2小时后到达B处,测得该岛在北偏东75°方向,求此时海监船与黄岩岛P的距离BP的长.(结果精确到0.1海里,参考数据:tan75°≈3.732,sin75°≈0.966,sin15°≈0.259,≈1.414,≈1.732)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是半圆O的直径,按以下步骤作图:
(1)分别以A,B为圆心,大于AO长为半径作弧,两弧交于点P,连接OP与半圆交于点C;
(2)分别以A,C为圆心,大于AC长为半径作弧,两弧交于点Q,连接OQ与半圆交于点D;
(3)连接AD,BD,BC,BD与OC交于点 E.根据以上作图过程及所作图形,下列结论:①BD平分∠ABC;②BC∥OD;③CE=OE;④AD2=ODCE;所有正确结论的序号是( )
A.①②B.①④C.②③D.①②④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com