£¨2011•ÄÏÄþ£©Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬Å×ÎïÏßy=x2+mx+n¾­¹ýµãA£¨3£¬0£©¡¢B£¨0£¬-3£©£¬µãPÊÇÖ±ÏßABÉϵĶ¯µã£¬¹ýµãP×÷xÖáµÄ´¹Ïß½»Å×ÎïÏßÓÚµãM£¬ÉèµãPµÄºá×ø±êΪt£®
£¨1£©·Ö±ðÇó³öÖ±ÏßABºÍÕâÌõÅ×ÎïÏߵĽâÎöʽ£®
£¨2£©ÈôµãPÔÚµÚËÄÏóÏÞ£¬Á¬½ÓAM¡¢BM£¬µ±Ï߶ÎPM×ʱ£¬Çó¡÷ABMµÄÃæ»ý£®
£¨3£©ÊÇ·ñ´æÔÚÕâÑùµÄµãP£¬Ê¹µÃÒÔµãP¡¢M¡¢B¡¢OΪ¶¥µãµÄËıßÐÎΪƽÐÐËıßÐΣ¿Èô´æÔÚ£¬ÇëÖ±½Óд³öµãPµÄºá×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©·Ö±ðÀûÓôý¶¨ÏµÊý·¨ÇóÁ½º¯ÊýµÄ½âÎöʽ£º°ÑA£¨3£¬0£©B£¨0£¬-3£©·Ö±ð´úÈëy=x2+mx+nÓëy=kx+b£¬µÃµ½¹ØÓÚm¡¢nµÄÁ½¸ö·½³Ì×飬½â·½³Ì×é¼´¿É£»
£¨2£©ÉèµãPµÄ×ø±êÊÇ£¨t£¬t-3£©£¬ÔòM£¨t£¬t2-2t-3£©£¬ÓÃPµãµÄ×Ý×ø±ê¼õÈ¥MµÄ×Ý×ø±êµÃµ½PMµÄ³¤£¬¼´PM=£¨t-3£©-£¨t2-2t-3£©=-t2+3t£¬È»ºó¸ù¾Ý¶þ´Îº¯ÊýµÄ×îÖµµÃµ½
µ±t=-
3
2¡Á(-1)
=
3
2
ʱ£¬PM×Ϊ
0-9
4¡Á(-1)
=
9
4
£¬ÔÙÀûÓÃÈý½ÇÐεÄÃæ»ý¹«Ê½ÀûÓÃS¡÷ABM=S¡÷BPM+S¡÷APM¼ÆËã¼´¿É£»
£¨3£©ÓÉPM¡ÎOB£¬¸ù¾ÝƽÐÐËıßÐεÄÅж¨µÃµ½µ±PM=OBʱ£¬µãP¡¢M¡¢B¡¢OΪ¶¥µãµÄËıßÐÎΪƽÐÐËıßÐΣ¬È»ºóÌÖÂÛ£ºµ±PÔÚµÚËÄÏóÏÞ£ºPM=OB=3£¬PM×ʱֻÓÐ
9
4
£¬ËùÒÔ²»¿ÉÄÜ£»µ±PÔÚµÚÒ»ÏóÏÞ£ºPM=OB=3£¬£¨t2-2t-3£©-£¨t-3£©=3£»µ±PÔÚµÚÈýÏóÏÞ£ºPM=OB=3£¬t2-3t=3£¬·Ö±ð½âÒ»Ôª¶þ´Î·½³Ì¼´¿ÉµÃµ½Âú×ãÌõ¼þµÄtµÄÖµ£®
½â´ð£º½â£º£¨1£©°ÑA£¨3£¬0£©B£¨0£¬-3£©´úÈëy=x2+mx+n£¬µÃ
0=9+3m+n
-3=n

½âµÃ
m=-2
n=-3
£¬
ËùÒÔÅ×ÎïÏߵĽâÎöʽÊÇy=x2-2x-3£®
ÉèÖ±ÏßABµÄ½âÎöʽÊÇy=kx+b£¬
°ÑA£¨3£¬0£©B£¨0£¬-3£©´úÈëy=kx+b£¬µÃ
0=3k+b
-3=b
£¬
½âµÃ
k=1
b=-3
£¬
ËùÒÔÖ±ÏßABµÄ½âÎöʽÊÇy=x-3£»

£¨2£©ÉèµãPµÄ×ø±êÊÇ£¨t£¬t-3£©£¬ÔòM£¨t£¬t2-2t-3£©£¬
ÒòΪpÔÚµÚËÄÏóÏÞ£¬
ËùÒÔPM=£¨t-3£©-£¨t2-2t-3£©=-t2+3t£¬
µ±t=-
3
2¡Á(-1)
=
3
2
ʱ£¬¶þ´Îº¯ÊýµÄ×î´óÖµ£¬¼´PM×ֵΪ
0-9
4¡Á(-1)
=
9
4
£¬
ÔòS¡÷ABM=S¡÷BPM+S¡÷APM=
1
2
¡Á
9
4
¡Á3
=
27
8
£®

£¨3£©´æÔÚ£¬ÀíÓÉÈçÏ£º
¡ßPM¡ÎOB£¬
¡àµ±PM=OBʱ£¬µãP¡¢M¡¢B¡¢OΪ¶¥µãµÄËıßÐÎΪƽÐÐËıßÐΣ¬
¢Ùµ±PÔÚµÚËÄÏóÏÞ£ºPM=OB=3£¬PM×ʱֻÓÐ
9
4
£¬ËùÒÔ²»¿ÉÄÜÓÐPM=3£®
¢Úµ±PÔÚµÚÒ»ÏóÏÞ£ºPM=OB=3£¬£¨t2-2t-3£©-£¨t-3£©=3£¬½âµÃt1=
3+
21
2
£¬t2=
3-
21
2
£¨ÉáÈ¥£©£¬ËùÒÔPµãµÄºá×ø±êÊÇ
3+
21
2
£»
¢Ûµ±PÔÚµÚÈýÏóÏÞ£ºPM=OB=3£¬t2-3t=3£¬½âµÃt1=
3+
21
2
£¨ÉáÈ¥£©£¬t2=
3-
21
2
£¬ËùÒÔPµãµÄºá×ø±êÊÇ
3-
21
2
£®
ËùÒÔPµãµÄºá×ø±êÊÇ
3+
21
2
»ò
3-
21
2
£®
µãÆÀ£º±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄ×ÛºÏÌ⣺ÏÈÀûÓôý¶¨ÏµÊý·¨Çóº¯ÊýµÄ½âÎöʽ£¬È»ºó¸ù¾Ý½âÎöʽ±íʾµãµÄ×ø±ê£¬ÔÙÀûÓÃ×ø±ê±íʾÏ߶εij¤£¬ÀûÓöþ´Îº¯ÊýµÄÐÔÖÊÇóÏ߶εÄ×î´óÖµ£®Í¬Ê±¿¼²éÁËƽÐÐËıßÐεÄÅж¨¶¨ÀíÒÔ¼°Ò»Ôª¶þ´Î·½³ÌµÄ½â·¨£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•ÄÏÄþ£©Èçͼ£¬·½¸ñÖ½ÖеÄÿ¸öС·½¸ñ¶¼ÊDZ߳¤Îª1¸öµ¥Î»³¤¶ÈµÄÕý·½ÐΣ¬¡÷ABCµÄ¶¥µã¶¼ÔÚ¸ñµãÉÏ£¬½¨Á¢Æ½ÃæÖ±½Ç×ø±êϵ£®
£¨1£©µãAµÄ×ø±êΪ
£¨2£¬8£©
£¨2£¬8£©
£¬µãCµÄ×ø±êΪ
£¨6£¬6£©
£¨6£¬6£©
£®
£¨2£©½«¡÷ABCÏò×óƽÒÆ7¸öµ¥Î»£¬Çë»­³öƽÒƺóµÄ¡÷A1B1C1£®ÈôMΪ¡÷ABCÄÚµÄÒ»µã£¬Æä×ø±êΪ£¨a£¬b£©£¬ÔòƽÒƺóµãMµÄ¶ÔÓ¦µãM1µÄ×ø±êΪ
£¨a-7£¬b£©
£¨a-7£¬b£©
£®
£¨3£©ÒÔÔ­µãOΪλËÆÖÐÐÄ£¬½«¡÷ABCËõС£¬Ê¹±ä»»ºóµÃµ½µÄ¡÷A2B2C2Óë¡÷ABC¶ÔÓ¦±ßµÄ±ÈΪ1£º2£®ÇëÔÚÍø¸ñÄÚ»­³ö¡÷A2B2C2£¬²¢Ð´³öµãA2µÄ×ø±ê£º
£¨1£¬4£©»ò£¨-1£¬-4£©
£¨1£¬4£©»ò£¨-1£¬-4£©
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•ÄÏÄþ£©Èçͼ£¬ÒÑÖªCDÊÇ¡ÑOµÄÖ±¾¶£¬AC¡ÍCD£¬´¹×ãΪC£¬ÏÒDE¡ÎOA£¬Ö±ÏßAE¡¢CDÏཻÓÚµãB£®
£¨1£©ÇóÖ¤£ºÖ±ÏßABÊÇ¡ÑOµÄÇÐÏߣ®
£¨2£©µ±AC=1£¬BE=2£¬Çótan¡ÏOACµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•ÄÏÄþ£©Èçͼ£¬ÔÚ¡÷ABCÖУ¬¡ÏACB=90¡ã£¬¡ÏA=15¡ã£¬AB=8£¬ÔòAC•BCµÄֵΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•ÄÏÄþ£©Èçͼ£¬ÈýÊÓͼÃèÊöµÄʵÎïÐÎ×´ÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•ÄÏÄþ£©Èçͼ£¬ÔÚԲ׶Ðεĵ¾²Ý¶Ñ¶¥µãP´¦ÓÐһֻ裬¿´µ½µ×ÃæÔ²ÖÜÉϵĵãA´¦ÓÐÒ»Ö»ÀÏÊó£¬Ã¨ÑØ×ÅĸÏßPAÏÂÈ¥×¥ÀÏÊó£¬Ã¨µ½´ïµãAʱ£¬ÀÏÊóÒÑÑØ×ŵ×ÃæÔ²ÖÜÌÓÅÜ£¬Ã¨ÔÚºóÃæÑØ×ÅÏàͬµÄ·Ïß×·£¬ÔÚÔ²ÖܵĵãB´¦×¥µ½ÁËÀÏÊóºóÑØĸÏßBP»Øµ½¶¥µãP´¦£®ÔÚÕâ¸ö¹ý³ÌÖУ¬¼ÙÉèèµÄËÙ¶ÈÊÇÔÈËٵģ¬Ã¨³ö·¢ºóÓëµãP¾àÀës£¬ËùÓÃʱ¼äΪt£¬ÔòsÓëtÖ®¼äµÄº¯Êý¹ØϵͼÏóÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸