精英家教网 > 初中数学 > 题目详情
已知下列n(n为正整数)个关于x的一元二次方程:①x2-1=0,②x2+x-2=0,③x2+2x-3=0,…(n)x2+(n-1)x-n=0.
(1)请解上述一元二次方程①、②、③、(n);
(2)请你指出这n个方程的根具有什么共同特点,写出一条即可.
【答案】分析:利用因式分解法分别解方程,求出结果,分析方程的解与因式之间的关系,总结出共同特点.
解答:解:(1)①(x+1)(x-1)=0,
所以x1=-1,x2=1
②(x+2)(x-1)=0,
所以x1=-2,x2=1;
③(x+3)(x-1)=0,
所以x1=-3,x2=1;
(n)(x+n)(x-1)=0,
所以x1=-n,x2=1

(2)共同特点是:
都有一个根为1;都有一个根为负整数;
两个根都是整数根等等.
点评:利用因式分解法分别解方程,求出结果,分析方程的解与因式之间的关系,总结出共同特点.
练习册系列答案
相关习题

科目:初中数学 来源:活学巧练八年级数学(下) 题型:044

先阅读下列证明的过程及结论,然后运用结论解答问题.

已知:一组数据x1,x2,…,xn的平均数为,方差S2(x1)2+(x2)2+……+(xn)2].

求证:S2[+…+]-.运用这一简化公式对一些数据较小且较“整”的样本计算方差和标准差较容易.

证明:

S2[(x1)2+(x2)2+…+(xn)2]

[()+()+…+()]

[(+…+)-2(x1+x2+…+xn)]

[(+…+)-2·n··]

[(+…+)-2·n·]

[(+…+)-]

(+…+)-

解答题目:一组数据1,2,3,x,-1,-2,-3.其中x是小于10的正整数,且数据的方差是整数,求该数据的方差.

查看答案和解析>>

同步练习册答案