精英家教网 > 初中数学 > 题目详情

如图甲,在正方形ABCD中,,点P、Q从A点沿边AB、BC、CD运动,点M从A点沿边AD、DC、CB运动,点P、Q的速度分别为1cm/s,3cm/s ,点M的速度2 cm/s.若它们同时出发,当点M与点Q相遇时,所有点都停止运动.设运动的时间为ts,△PQM的面积为Scm2,则S关于t的函数图象如图乙所示.结合图形,完成以下各题:
(1)当t为何值时,点M与点Q相遇?
(2)填空:                   .
(3)当时,求S与t的函数关系式;
(4)在整个运动过程中,能否为直角三角形?若能,请求出此时t的值;若不能,请说明理由.

解:⑴ 根据题意可列方程为,则
答:当时,点M与点Q相遇。---------------------------------3分
⑵ 8;13.5;12(每空1分)
(3)当时,
S与t的函数关系式是

=-----------------------------------------------------------------------------------9分
(4) 当0<t≤2时,不能成为直角三角形;
时,若能成为直角三角形,则有△BPQ∽△CMP,即
,可求出
当3<t≤4时,若能成为直角三角形,则有△BPQ∽△AQM,即
,无解;
当4<t<4.8时,
----------------------------------------------------------------12分

解析

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图甲,在正方形ABCD中,AB=6cm,点P、Q从A点沿边AB、BC、CD运动,点M从A点沿边AD、DC、CB运动,点P、Q的速度分别为1cm/s,3cm/s,点M的速度2cm/s.若它们同时出发,当点M与点Q相遇时,所有点都停止运动.设运动的时间为ts,△PQM的面积为Scm2,则S关于t的函数图象如图乙所示.结合图形,完成以下各题:
(1)当t为何值时,点M与点Q相遇?
(2)填空:a=
 
;b=
 
;c=
 

(3)当2<t≤3时,求S与t的函数关系式;
(4)在整个运动过程中,△PQM能否为直角三角形?若能,请求出此时t的值;若不能,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源:2012年江苏宿迁沂涛中学中考模拟数学试卷(解析版) 题型:解答题

如图甲,在正方形ABCD中,,点P、Q从A点沿边AB、BC、CD运动,点M从A点沿边AD、DC、CB运动,点P、Q的速度分别为1cm/s,3cm/s ,点M的速度2 cm/s.若它们同时出发,当点M与点Q相遇时,所有点都停止运动.设运动的时间为ts,△PQM的面积为Scm2,则S关于t的函数图象如图乙所示.结合图形,完成以下各题:

(1)当t为何值时,点M与点Q相遇?

(2)填空:                      .

(3)当时,求S与t的函数关系式;

(4)在整个运动过程中,能否为直角三角形?若能,请求出此时t的值;若不能,请说明理由.

 

查看答案和解析>>

科目:初中数学 来源:2012年江苏省宿迁市沭阳县沂涛中学中考数学模拟试卷(解析版) 题型:解答题

如图甲,在正方形ABCD中,AB=6cm,点P、Q从A点沿边AB、BC、CD运动,点M从A点沿边AD、DC、CB运动,点P、Q的速度分别为1cm/s,3cm/s,点M的速度2cm/s.若它们同时出发,当点M与点Q相遇时,所有点都停止运动.设运动的时间为ts,△PQM的面积为Scm2,则S关于t的函数图象如图乙所示.结合图形,完成以下各题:
(1)当t为何值时,点M与点Q相遇?
(2)填空:a=______;b=______;c=______.
(3)当2<t≤3时,求S与t的函数关系式;
(4)在整个运动过程中,△PQM能否为直角三角形?若能,请求出此时t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2011年江苏省宿迁市中考数学二模试卷(解析版) 题型:解答题

如图甲,在正方形ABCD中,AB=6cm,点P、Q从A点沿边AB、BC、CD运动,点M从A点沿边AD、DC、CB运动,点P、Q的速度分别为1cm/s,3cm/s,点M的速度2cm/s.若它们同时出发,当点M与点Q相遇时,所有点都停止运动.设运动的时间为ts,△PQM的面积为Scm2,则S关于t的函数图象如图乙所示.结合图形,完成以下各题:
(1)当t为何值时,点M与点Q相遇?
(2)填空:a=______;b=______;c=______.
(3)当2<t≤3时,求S与t的函数关系式;
(4)在整个运动过程中,△PQM能否为直角三角形?若能,请求出此时t的值;若不能,请说明理由.

查看答案和解析>>

同步练习册答案