精英家教网 > 初中数学 > 题目详情
已知抛物线y=ax2+bx+c(a>0)的对称轴为直线x=-1,与x轴的一个交点为(x1,0),且0<x1<1,下列结论:①9a-3b+c>0;②b<c;③3a+c>0,其中正确结论两个数有______个.
①∵0<x1<1,
∴点(1,a+b+c)在第一象限,
又∵对称轴为直线x=-1,
∴(-3,9a-3b+c)在第二象限,故9a-3b+c>0,正确;
②∵-
b
2a
=-1,∴b=2a,
∴b-a=2a-a=a>0,
又0<x1<1,抛物线开口向上,
∴抛物线与y轴交于负半轴,c<0,
∴b>a>c,不正确;
③把b=2a代入a+b+c>0得3a+c>0,正确;
故答案为2个.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

抛物线y=-2(x-3)2+5的顶点坐标是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,已知点P(0,4),点A在线段OP上,点B在x轴正半轴上,且AP=OB=t, 0<t<4,以AB为边在第一象限内作正方形ABCD;过点C、D依次向x轴、y轴作垂线,垂足为M,N,设过O,C两点的抛物线为y=ax2+bx+c.
(1)填空:△AOB≌△       ≌△BMC(不需证明);用含t的代数式表示A点纵坐标:A(0,       
(2)求点C的坐标,并用含a,t的代数式表示b;
(3)当t=1时,连接OD,若此时抛物线与线段OD只有唯一的公共点O,求a的取值范围;
(4)当抛物线开口向上,对称轴是直线,顶点随着t的增大向上移动时,求t的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

抛物线y=(x+1)2+2的顶点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数y=x2+2x+3的顶点坐标是(  )
A.(1,2)B.(-1,2)C.(1,4)D.(-1,4)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

抛物线y=x2+2x-2013的对称轴是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

关于抛物线y=x2-2x,下列说法正确的是(  )
A.顶点是坐标原点B.对称轴是直线x=2
C.有最高点D.经过坐标原点

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

阅读下列材料,并解答问题:
函数y=ax2+bx+c(a≠0)叫做二次函数,它的图象是抛物线,二次函数可以化成y=a(x-h)2+k的形式,则点(h,k)为抛物线的顶点坐标.
例:y=2x2+4x-1=2(x+1)2-3,则顶点坐标为(-1,-3).
运用上述方法,求抛物线y=-2x2-3x+4的顶点坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知函数y=
(x-1)2-1(x≤3)
(x-5)2-1(x>3)
,若使y=k成立的x值恰好有三个,则k的值为______.

查看答案和解析>>

同步练习册答案