精英家教网 > 初中数学 > 题目详情
10、有一个三角形三边分别为a=3,b=4,c=5,另一个三角形a′=8,b′=6,c′=10,则这两个三角形(  )
分析:由三边的长,可根据勾股定理求得其为直角三角形,再根据相似三角形的判定方法可得到两三角形相似.
解答:解:根据题意,由勾股定理的逆定理得:
这两个三角形都是直角三角形;
∵a:b′=b:a′=c:c′=1:2;
∴两三角形相似
故选B
点评:此题考查了勾股定理的逆定理和相似三角形的判定.
①若对应三边的比相等,则三角形相似;
②若对应两边的比相等,及其夹角相等,则三角形相似;
③若有两个角对应相等,则三角形相似.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图①所示的是一个三角形,分别连接这个三角形三边的中点得到图②,再分别连接图②中间的小三角形三边的中点,得到图③,按此方法继续连接,请你根据每个图中三角形的个数的规律完成各题.

(1)将下表填写完整;
图形编号
三角形个数 1 5
9
9
13
13
17
17
(2)在第n个图形中有
4n-3
4n-3
个三角形;(用含n的式子表示)
(3)按照上述方法,能否得到2013个三角形?如果能,请求出n;如果不能,请简述理由.

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

有一个三角形三边分别为a=3,b=4,c=5,另一个三角形a′=8,b′=6,c′=10,则这两个三角形


  1. A.
    都是直角三角形,但不相似
  2. B.
    都是直角三角形,也相似
  3. C.
    都是钝角三角形,也相似
  4. D.
    都是锐角三角形,也相似

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

有一个三角形三边分别为a=3,b=4,c=5,另一个三角形a′=8,b′=6,c′=10,则这两个三角形(  )
A.都是直角三角形,但不相似
B.都是直角三角形,也相似
C.都是钝角三角形,也相似
D.都是锐角三角形,也相似

查看答案和解析>>

科目:初中数学 来源:同步题 题型:单选题

有一个三角形三边分别为a=3,b=4,c=5,另一个三角形a'=8,b'=6,c'=10,则这两个三角形
[     ]
A.都是直角三角形,但不相似
B.都是直角三角形,也相似
C.都是钝角三角形,也相似
D.都是锐角三角形,也相似

查看答案和解析>>

同步练习册答案