精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.按要求作图:

1)画出关于原点的中心对称图形

2)画出将绕点顺时针方向旋转90°得到的

3)设边上一点,在上与点对应的点是.则点坐标为__________

【答案】1)见解析;(2)见解析;(3)(b-a).

【解析】

1)利用关于原点对称的点的坐标特征写出A1B1C1的坐标,然后描点,顺次连接即可;
2)利用网格特点和旋转的性质画出ABC的对应点A2B2C2,从而得到△A2B2C2
3)利用AA2BB2CC2的坐标特征确定对应点的坐标变换规律,从而写出点P1坐标.

解:(1)如图,△A1B1C1即为所作;

2)如图,△A2B2C2即为所作;
3)点P1坐标为(b-a).
故答案为:(b-a).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】随着移动计算技术和无线网络的快速发展,移动学习方式越来越引起人们的关注,某校计划将这种学习方式应用到教育学中,从全校1500名学生中随机抽取了部分学生,对其家庭中拥有的移动设备的情况进行调查,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题:

(1)本次接受随机抽样调查的学生人数为   ,图①中m的值为   

(2)求本次调查获取的样本数据的众数、中位数和平均数;

(3)根据样本数据,估计该校1500名学生家庭中拥有3台移动设备的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点DABC的边AC上,要判定ADBABC相似,添加一个条件,不正确的是(  )

A. ABD=C B. ADB=ABC C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=﹣x2+bx+c经过点A(5,)、点B(9,﹣10),与y轴交于点C,点P是直线AC上方抛物线上的一个动点;

(1)求抛物线对应的函数解析式;

(2)过点P且与y轴平行的直线l与直线BC交于点E,当四边形AECP的面积最大时,求点P的坐标;

(3)当∠PCB=90°时,作∠PCB的角平分线,交抛物线于点F.

①求点P和点F的坐标;

②在直线CF上是否存在点Q,使得以F、P、Q为顶点的三角形与BCF相似,若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数y(2m+1)x+m3

(1)若函数图象经过原点,求m的值;

(2)若函数图象在y轴的截距为﹣2,求m的值;

(3)若函数的图象平行直线y3x3,求m的值;

(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边ABC的边长为6ADBC边上的中线,MAD上的动点,E是边AC上一点,若AE=2,则EM+CM的最小值为(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=﹣x+bx+c y轴相交于点 A(0,3),与x正半轴相交于点B,对称轴是直线 x=1

(1)求此抛物线的解析式以及点B的坐标.

(2)动点M 从点 O 出发,以每秒2个单位长度的速度沿 x 轴正方向运动,同时动点 N 从点O出发,以每秒 3 个单位长度的速度沿y 轴正方向运动,当N点到达 A 点时,M、N同时停止运动.过动点 M x 轴的垂线交线段 AB 于点Q,交抛物线于点 P,设运动的时间为 t 秒.

t 为何值时,四边形 OMPN 为矩形.

t>0 时,△BOQ 能否为等腰三角形?若能,求出 t 的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,所对边分别是,且,若满足,则称为奇异三角形,例如等边三角形就是奇异三角形.

(1)若,判断是否为奇异三角形,并说明理由;

(2)若,求的长;

(3)如图2,在奇异三角形中,,点边上的中点,连结分割成2个三角形,其中是奇异三角形,是以为底的等腰三角形,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.

(1)求证:OE是CD的垂直平分线.

(2)若∠AOB=60,请你探究OE,EF之间有什么数量关系?并证明你的结论。

查看答案和解析>>

同步练习册答案