精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,抛物线yax2+bx+c经过A(﹣6,0)、B(2,0)、C(0,6)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与AD重合),过点Py轴的垂线,垂足为点E,连接AE

(1)求抛物线的函数解析式,并写出顶点D的坐标;

(2)如果点P的坐标为(xy),PAE的面积为S,求Sx之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值;

(3)过点P(﹣3,m)作x轴的垂线,垂足为点F,连接EF,把PEF沿直线EF折叠,点P的对应点为点P,求出P的坐标.(直接写出结果)

【答案】(1)抛物线解析式为:y=-x2﹣2x+6,抛物线的顶点D(﹣2,8);(2)9;(3)P′().

【解析】

1)由抛物线y=ax2+bx+c经过A、B、C三点,则代入求得a,b,c,进而得解析式与顶点D.
(2)由PAD上,则可求AD解析式表示P点.由SAPE=PEyP,所以S可表示,进而由函数最值性质易得S最值.

(3)求出点P,过点P′P′My轴于点M,再根据相关条件解答即可.

解:(1)∵抛物线y=ax2+bx+c经过点A(﹣6,0),B(2,0),C(0,6)三点,

,解得:

∴抛物线解析式为:y=x2﹣2x+6,

∴抛物线的顶点D(﹣2,8);

(2)A(﹣6,0),D(﹣2,8),

∴设AD的解析式y=2x+12,

∵点PAD上,

P(x,2x+12),

SAPE=PEyP=×(﹣x)(2x+12)=﹣x2﹣6x,

x=-3时,S最大=9

(3)P′().

PAD上,

∴当﹣3时,y=2×(﹣3)+12=6,

∴点P(﹣3,6),

PF=6,PE=3,

过点P′P′My轴于点M,

∵△PEF沿EF翻折得P′EF,

∴∠PFE=P′FE,PF=P′F=6,PE=P′E=3,

PFy轴,

∴∠PFE=FEN,

∵∠PFE=P′FE,

∴∠FEN=P′FE,

EN=FN,

EN=a,则FN=a,P′N=6﹣a,

RtP′EN中,P′N2+P′E2=EN2,即(6﹣a)2+32=a2,解得:a=

SP′EN=P′NP′E=ENP′M,

P′M=

RtEMP′中,EM=

OM=EO﹣EM=6﹣

P′().

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】12分)如图,ABC内接于O,AB=AC,BD为O的弦,且ABCD,过点A作O的切线AE与DC的延长线交于点E,AD与BC交于点F.

(1)求证:四边形ABCE是平行四边形;

(2)若AE=6,CD=5,求OF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=﹣x2+bx+c经过点A、C,与AB交于点D.

(1)求抛物线的函数解析式;

(2)P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,CPQ的面积为S.

①求S关于m的函数表达式;

②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0,a,b,c为常数)图象如图所示,根据图象解答问题.

(1)写出过程ax2+bx+c=0的两个根.

(2)写出不等式ax2+bx+c>0的解集.

(3)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则以下结论同时成立的是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+1(k≠0)与反比例函数(m≠0)的图象有公共点A(1,2).直线lx轴于点N(3,0),与一次函数和反比例函数的图象分别交于点B,C.

(1)求一次函数与反比例函数的解析式;

(2)求ABC的面积?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】全面两孩政策实施后,甲,乙两个家庭有各自的规划.假定生男生女的概率相,回答下列问题

(1家庭已有一个男孩,准备生一个孩子,第二个孩子是女孩的率是

(2)乙家庭没有孩子准备生两个孩子求至少有一个孩子是女孩的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将矩形纸片ABCD折叠,使点B落在边CD上的B′处,折痕为AE,过B'作B'P∥BC,交AE于点P,连接BP.已知BC=3,CB'=1,下列结论:①AB=5;②sin∠ABP=;③四边形BEB′P为菱形;④S四边形BEB'P﹣S△ECB'=1,其中正确的个数是(  )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线 y=x2+bx+ y轴交于点 B,将该抛物线平移,使其经过点 A(-,0),且与 x轴交于另一点 C. b≤﹣2,则线段 OB,OC的大小关系是( )

A. OB≤OC B. OB<OC C. OB≥OC D. OB>OC

查看答案和解析>>

同步练习册答案