精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,在矩形中,是对角线,点为矩形外一点且满足于点,连接,过点

1)若,求矩形的面积;

2)若,试判断线段之间的关系,并证明.

【答案】115;(2,证明见解析.

【解析】

1)由等腰直角三角形的性质可得,由勾股定理求出,,即可求矩形ABCD的面积;

2)由矩形的性质可得∠ADC=∠APC90°,可证点A,点C,点D,点P四点共圆,可得∠PDA=∠PCA45°,∠PCD=∠PAD,∠DPC=∠DAC,然后证明△ADE≌△ADC,△PAN≌△PEC,可得ACAEPNPE,即可得出结论.

解:(1

2

证明:如图,延长交于点

四边形是矩形

,点,点,点四点共圆,

.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】ABC中,∠ACB45°.点D(与点BC不重合)为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF

1)如果ABAC.如图①,且点D在线段BC上运动.试判断线段CFBD之间的位置关系,并证明你的结论.

2)如果AB≠AC,如图②,且点D在线段BC上运动.(1)中结论是否成立,为什么?

3)若正方形ADEF的边DE所在直线与线段CF所在直线相交于点P,设AC4BC3CDx,求线段CP的长.(用含x的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①已知线段CD所在直线的解析式为y=﹣x+3,分别交坐标轴于点CD

1)若以点B10)为圆心的⊙B半径为r,⊙B与线段CD只有一个交点,则r满足   

2)如图②,如果点P从(﹣50)出发,以1个单位长度的速度沿x轴向右作匀速运动,当运动时间到t秒时,以点P为圆心、t个单位长度为半径的圆P与线段CD所在直线有两个交点,分别为点EF,且∠EPF2OCD,求此时t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为预防禽流感,上海建立了候鸟监测站,某候鸟监测站将一天7点至17点监测到上空飞过的候鸟数制成了如下直方图:

1)候鸟飞过的高峰期在一天的______

2)这一天7点至17点期间,平均每小时飞过上空的候鸟有______只;

3)每两个小时飞过上空的候鸟数的中位数是______

4)若一天飞过上空的候鸟数按此估算,该监测站九月份监测到的候乌只数约是______只;

57—9时段的频率是______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A31),B10),PQ是直线y=x上的一条动线段且PQ=QP的下方),当AP+PQ+QB取最小值时,点Q坐标为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有三张正面分别标有数字:-112的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中随机抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.

(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;

(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(xy)落在双曲线上的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD的两边长AB16cmAD4cm,点PQ分别从AB同时出发,P在边AB上沿AB方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动设运动时间为x(秒),设△BPQ的面积为ycm2

1)求y关于x的函数关系式,并写出x的取值范围;

2)当△BPQ面积有最大值时,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知多边形ABDEC是由边长为2的等边三角形ABC和正方形BDEC组成,一圆过ADE三点,求该圆半径的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图1,将矩形ABCD折叠,使BC落在对角线BD上,折痕为BE,点C落在点C′处,若∠ADB=46°,则∠DBE的度数为   °.

(2)小明手中有一张矩形纸片ABCD,AB=4,AD=9.

(画一画)

如图2,点E在这张矩形纸片的边AD上,将纸片折叠,使AB落在CE所在直线上,折痕设为MN(点M,N分别在边AD,BC上),利用直尺和圆规画出折痕MN(不写作法,保留作图痕迹,并用黑色水笔把线段描清楚);

(算一算)

如图3,点F在这张矩形纸片的边BC上,将纸片折叠,使FB落在射线FD上,折痕为GF,点A,B分别落在点A′,B′处,若AG=,求B′D的长;

(验一验)

如图4,点K在这张矩形纸片的边AD上,DK=3,将纸片折叠,使AB落在CK所在直线上,折痕为HI,点A,B分别落在点A′,B′处,小明认为B′I所在直线恰好经过点D,他的判断是否正确,请说明理由.

查看答案和解析>>

同步练习册答案