【题目】已知:如图,在矩形中,是对角线,点为矩形外一点且满足,,交于点,连接,过点作交于.
(1)若,,求矩形的面积;
(2)若,试判断线段、、之间的关系,并证明.
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠ACB=45°.点D(与点B、C不重合)为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
(1)如果AB=AC.如图①,且点D在线段BC上运动.试判断线段CF与BD之间的位置关系,并证明你的结论.
(2)如果AB≠AC,如图②,且点D在线段BC上运动.(1)中结论是否成立,为什么?
(3)若正方形ADEF的边DE所在直线与线段CF所在直线相交于点P,设AC=4,BC=3,CD=x,求线段CP的长.(用含x的式子表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①已知线段CD所在直线的解析式为y=﹣x+3,分别交坐标轴于点C、D,
(1)若以点B(1,0)为圆心的⊙B半径为r,⊙B与线段CD只有一个交点,则r满足 .
(2)如图②,如果点P从(﹣5,0)出发,以1个单位长度的速度沿x轴向右作匀速运动,当运动时间到t秒时,以点P为圆心、t个单位长度为半径的圆P与线段CD所在直线有两个交点,分别为点E、F,且∠EPF=2∠OCD,求此时t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为预防禽流感,上海建立了候鸟监测站,某候鸟监测站将一天7点至17点监测到上空飞过的候鸟数制成了如下直方图:
(1)候鸟飞过的高峰期在一天的______;
(2)这一天7点至17点期间,平均每小时飞过上空的候鸟有______只;
(3)每两个小时飞过上空的候鸟数的中位数是______;
(4)若一天飞过上空的候鸟数按此估算,该监测站九月份监测到的候乌只数约是______只;
(5)7时—9时段的频率是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A(3,1),B(1,0),PQ是直线y=x上的一条动线段且PQ=(Q在P的下方),当AP+PQ+QB取最小值时,点Q坐标为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有三张正面分别标有数字:-1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中随机抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.
(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;
(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线上的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD的两边长AB=16cm,AD=4cm,点P,Q分别从A,B同时出发,P在边AB上沿AB方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动设运动时间为x(秒),设△BPQ的面积为ycm2.
(1)求y关于x的函数关系式,并写出x的取值范围;
(2)当△BPQ面积有最大值时,求x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,将矩形ABCD折叠,使BC落在对角线BD上,折痕为BE,点C落在点C′处,若∠ADB=46°,则∠DBE的度数为 °.
(2)小明手中有一张矩形纸片ABCD,AB=4,AD=9.
(画一画)
如图2,点E在这张矩形纸片的边AD上,将纸片折叠,使AB落在CE所在直线上,折痕设为MN(点M,N分别在边AD,BC上),利用直尺和圆规画出折痕MN(不写作法,保留作图痕迹,并用黑色水笔把线段描清楚);
(算一算)
如图3,点F在这张矩形纸片的边BC上,将纸片折叠,使FB落在射线FD上,折痕为GF,点A,B分别落在点A′,B′处,若AG=,求B′D的长;
(验一验)
如图4,点K在这张矩形纸片的边AD上,DK=3,将纸片折叠,使AB落在CK所在直线上,折痕为HI,点A,B分别落在点A′,B′处,小明认为B′I所在直线恰好经过点D,他的判断是否正确,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com