精英家教网 > 初中数学 > 题目详情

【题目】某人去南方批发茶叶,在某地A批发市场以每包m元的价格进了40包茶叶,又到B批发市场时发现同样的茶叶比A批发市场要便宜,每包的价格仅为n元,因此他又在B批发市场进了60包同样的茶叶.如果他销售时以每包元的价格全部卖出这批茶叶,那么在不考虑其它因素的情况下他的这次买卖(  )

A.一定盈利B.一定亏损

C.不盈不亏D.盈亏不能确定

【答案】A

【解析】

根据题意列出商店在甲批发市场茶叶的利润,以及商店在乙批发市场茶叶的利润,将两利润相加表示出总利润,根据m大于n判断出其结果大于0,可得出这家商店盈利了.

根据题意列得:在甲批发市场茶叶的利润为40m)=20m+n)﹣40m20n20m

在乙批发市场茶叶的利润为60n)=30m+n)﹣60n30m30n

∴该商店的总利润为20n20m+30m30n10m10n10mn),

mn

mn0,即10mn)>0

则在不考虑其它因素的情况下他的这次买卖一定盈利.

故选:A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】数轴上两点AB所表示的数分别为ab,且满足。点E以每秒1个单位的速度从原点O出发向右运动,同时点M从点A出发以每秒7个单位的速度向左运动,点N从点B出发,以每秒10个单位的速度向右运动,PQ分别为MEQN的中点。思考,在运动过程中,的值________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某淘宝商家计划平均每天销售某品牌儿童滑板车100辆,但由于种种原因,实际每天的销售量与计划量相比有出入。下表是某周的销售情况(超额记为正、不足记为负):

星期

与计划量的差值

+4

-3

-5

+14

-8

+21

-6

1)根据记录的数据可知该店前三天共销售该品牌儿童滑板车______辆。

2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售______辆。

3)该店实行每日计件工资制,每销售一辆车可得40元,若超额完成任务,则超过部分每辆另奖15元;少销售一辆扣20元,那么该店铺的销售人员这一周的工资总额是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直角坐标系中,直线与反比例函数的图象交于AB两点,已知A点的纵坐标是2.

(1)求反比例函数的解析式.

(2)将直线沿x轴向右平移6个单位后,与反比例函数在第二象限内交于点C.动点Py轴正半轴上运动,当线段PA与线段PC之差达到最大时,求点P的坐标.

【答案】(1);(2)P(0,6)

【解析】试题分析:(1)先求得点A的坐标,再利用待定系数法求得反比例函数的解析式即可;(2)连接AC,根据三角形两边之差小于第三边知:当A、C、P不共线时,PA-PC<AC;当A、C、P不共线时,PA-PC=AC;因此,当点P在直线AC与y轴的交点时,PA-PC取得最大值.先求得平移后直线的解析式,再求得平移后直线与反比例函数的图象的交点坐标,最后求直线AC的解析式,即可求得点P的坐标.

试题解析:

令一次函数,则

解得:,即点A的坐标为(-4,2).

点A(-4,2)在反比例函数的图象上,

∴k=-4×2=-8,

∴反比例函数的表达式为

连接AC,根据三角形两边之差小于第三边知:当A、C、P不共线时,PA-PC<AC;当A、C、P不共线时,PA-PC=AC;因此,当点P在直线AC与y轴的交点时,PA-PC取得最大值.

设平移后直线于x轴交于点F,则F(6,0)

设平移后的直线解析式为

将F(6,0)代入得:b=3

∴直线CF解析式:

3=,解得:

∴C(-2,4)

∵A、C两点坐标分别为A(-4,2)、C(-2,4)

∴直线AC的表达式为

此时,P点坐标为P(0,6).

点睛:本题是一次函数与反比例函数的综合题,主要考查了用待定系数法求函数的解析式、一次函数与反比例函数的交点坐标,熟练运用一次函数及反比例函数的性质是解题的关键.

型】解答
束】
26

【题目】以四边形ABCD的边ABAD为底边分别作等腰三角形ABFADE,连接EB.

(1)当四边形ABCD为正方形时(如图1),以边ABAD为斜边分别向外侧作等腰直角三角形ABFADE,连接EBFD,线段EBFD的数量关系是 .

(2)当四边形ABCD为矩形时(如图2),以边ABAD为斜边分别向内侧作等腰直角三角形ABFADE,连接EFBD,线段EFBD具有怎样的数量关系?请加以证明;

(3)当四边形ABCD为平行四边形时(如图3),以边ABAD为斜边分别向平行四边形内测、外侧作等腰直角三角形ABFADE,且EADFBA的顶角都为α,连接EFBD,交点为G,请用α表示出∠EGD,并说明理由.

1 2 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】3张纸牌,分別是红桃3、红桃4和黑桃5(简称红3,红4,黑5).把牌洗匀后甲先抽取一张,记下花色和数字后将牌放回,洗匀后乙再抽取一张.

1)两次抽得纸牌均为红桃的概率;(请用画树状图列表等方法写出分析过程)

2)甲、乙两人做游戏,现有两种方案.A方案:若两次抽得花色相同则甲胜,否则乙胜.B方案:若两次抽得纸牌的数字和为奇数则甲胜,否则乙胜.请问甲选择哪种方案胜率更高?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在同一平面内,∠AOB150°,∠COD90°OE平分∠BOD

1)当∠COD的位置如图1所示时,若∠COE25°,则∠AOD   

2)当∠COD的位置如图2所示时,若∠AOE90°,则∠AOD   

3)当∠COD的位置如图3所示时,若∠BOEAOC,求∠AOD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为选拔一名选手参加美丽江门,我为侨乡做代言主题演讲比赛,经研究,按下图所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整),下表是李明、张华在选拔赛中的得分情况:

服装

普通话

主题

演讲技巧

李明

85

70

80

85

张华

90

75

75

80

结合以上信息,回答下列问题:

1)求服装项目在选手考评中的权数;

2)根据你所学的知识,帮助学校在李明、张华两人中选择一人参加美丽江门,我为侨乡做代言主题演讲比赛,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD为菱形,∠D=60°AB=4E为边BC上的动点,连接AE,作AE的垂直平分线GF交直线CDF点,垂足为点G,则线段GF的最小值为____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,将置于平面直角坐标系中,.

1)画出向下平移5个单位得到的,并写出点的坐标;

2)画出绕点顺时针旋转得到的,并写出点的坐标;

3)画出以点为对称中心,与成中心对称的,并写出点的坐标.

查看答案和解析>>

同步练习册答案