分析 先设平板手推车的长度不能超过x米,则得出x为最大值时,平板手推车所形成的三角形CBE为等腰直角三角形.连接EF,与BC交于点G,利用△CBE为等腰直角三角形即可求得平板手推车的长度不能超过多少米.
解答 解:设平板手推车的长度不能超过x米,则x为最大值,且此时平板手推车所形成的三角形CBE为等腰直角三角形.
连接EF,与BC交于点G.
∵直角走廊的宽为1.5m,
∴EF=$\frac{3}{2}\sqrt{2}$(m),
∴GE=EF-FG=$\frac{3}{2}\sqrt{2}$-1(m).
又∵△CBE为等腰直角三角形,
∴AD=BC=2CG=2GE=3$\sqrt{2}$-2≈2.2(m).
故答案为:2.2
点评 本题主要考查了勾股定理的应用以及等腰三角形知识,解答的关键是由题意得出要想顺利通过直角走廊,此时平板手推车所形成的三角形为等腰直角三角形.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com