精英家教网 > 初中数学 > 题目详情
在Rt△ABC中,∠C=90°,且tanA=3,则cosB的值为(  )
A、
13
10
B、
10
3
C、
10
10
D、
3
10
10
分析:本题可以利用锐角三角函数的定义求解,也可以利用互为余角的三角函数关系式求解.
解答:解:解法1:利用三角函数的定义及勾股定理求解.
∵在Rt△ABC中,∠C=90°,tanA=3,
设a=3x,b=x,则c=
10
x,
∴cosB=
a
c
=
3
10
10

故选D.

解法2:利用同角、互为余角的三角函数关系式求解.
又∵tanA=
sinA
cosA
=3,
∴sinA=3cosA.
又sin2A+cos2A=1,
∴cosA=
10
10

∵A、B互为余角,
∴cosB=sin(90°-B)=sinA=
3
10
10

故选D.
点评:求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角(或余角)的三角函数关系式求三角函数值.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一点,以BD为直径的⊙O切AC于E,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知:在Rt△ABC中,∠C=90°,AB=12,点D是AB的中点,点O是△ABC的重心,则OD的长为(  )
A、12B、6C、2D、3

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,已知a及∠A,则斜边应为(  )
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求画出图形)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,则AC:BC的值为(  )
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步练习册答案