精英家教网 > 初中数学 > 题目详情

(1)如图1,以等腰直角△ABC的直角边AB、AC为直角边向外作等腰直角△ABE和△ACD,M是BC的中点,则DE与AM之间的数量关系为______;
(2)如图2,以任意直角△ABC的直角边AB、AC为直角边向外作等腰直角△ABE和△ACD,M是BC的中点,则DE与AM之间的数量关系为______;
(3)如图3,以任意非直角△ABC的边AB、AC为直角边向外作等腰直角△ABE和△ACD,M是BC的中点,试判断DE与AM之间的数量关系,并说明理由;
(4)如图4,若以△ABC的边AB、AC为直角边,向内作等腰直角△ABE和△ACD,其它条件不变,请直接写出线段DE与AM之间的数量关系.

解:(1)由于△ABC、△ABE和△ACD都是全等的等腰直角三角形,所以AE=AB=AC=AD,且EC⊥BD,则四边形ABCD是正方形,故DE=BC=2AM.

(2)∵△ABE和△ACD都是等腰直角三角形,
∴∠BAE=∠CAD=∠BAC=∠EAD=90°,且AE=AB,AC=AD,
∴△EAD≌△BAC,
∴DE=BC;
而AM是Rt△ABC斜边上的中线,则DE=BC=2AM.

(3)DE=2AM;
理由如下:
延长BA至F,使得BA=AF;
则AM是△BCF的中位线,CF=2AM.
∵∠BAE=∠EAF=∠CAD=90°,
∴∠EAD=∠FAC=90°-∠DAF,
又∵AE=AF=AB,AD=AC,
∴△AED≌△AFC,得DE=CF,
故DE=2AM.

(4)DE=2AM,解法和(3)完全相同.
分析:(1)易知四边形BCDE是正方形,那么ED=BC,且△ABC是等腰直角三角形,由此可得ED=BC=2AM.
(2)解法与(1)类似,由于△ABE、△ACD都是等腰直角三角形,可证得Rt△ABC≌Rt△AED,则BC=DE,而AM是斜边BC上的中线,即可得到ED=BC=2AM.
(3)与(1)(2)的结论相同,仍然要用全等三角形来求解.延长BA到F,使得BA=AF,连接FC,易知AM是△BCF的中位线,即CF=2AM,因此只需证得ED=CF即可.由于∠EAF、∠CAD都是直角,减去同一个角∠DAF后,得到∠EAD=∠CAF,而AF=AE、CA=AD,由此可得△ADE≌△ACF,由此得证.
(4)思路和解法与(3)完全相同.
点评:此题主要考查了直角三角形的性质、三角形中位线定理以及全等三角形的判定和性质,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,分别以等腰直角三角板的直角边、斜边为旋转轴旋转,所形成的旋转体的全面积依次记为S1,S2,则S1与S2的大小关系为(  )
A、S1>S2B、S1<S2C、S1=S2D、无法判断

查看答案和解析>>

科目:初中数学 来源: 题型:

附加题:
已知:如图⊙O是以等腰三角形ABC的底边BC为直径的外接圆,BD平分∠ABC交⊙O于D,且BD与OA、精英家教网AC分别交于点E、F延长BA、CD交于G.
(1)试证明:BF=CG.
(2)线段CD与BF有什么数量关系?为什么?
(3)试比较线段CD与BE的大小关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,⊙O以等腰△ABC的一腰AB为直径,它交另一腰AC于E,交BC于D.
求证:BC=2DE.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、(1)如图1,以等腰直角△ABC的直角边AB、AC为直角边向外作等腰直角△ABE和△ACD,M是BC的中点,则DE与AM之间的数量关系为
DE=2AM

(2)如图2,以任意直角△ABC的直角边AB、AC为直角边向外作等腰直角△ABE和△ACD,M是BC的中点,则DE与AM之间的数量关系为
DE=2AM

(3)如图3,以任意非直角△ABC的边AB、AC为直角边向外作等腰直角△ABE和△ACD,M是BC的中点,试判断DE与AM之间的数量关系,并说明理由;
(4)如图4,若以△ABC的边AB、AC为直角边,向内作等腰直角△ABE和△ACD,其它条件不变,请直接写出线段DE与AM之间的数量关系.

查看答案和解析>>

科目:初中数学 来源:第3章《圆的基本性质》中考题集(35):3.6 圆锥的侧面积和全面积(解析版) 题型:选择题

如图,分别以等腰直角三角板的直角边、斜边为旋转轴旋转,所形成的旋转体的全面积依次记为S1,S2,则S1与S2的大小关系为( )

A.S1>S2
B.S1<S2
C.S1=S2
D.无法判断

查看答案和解析>>

同步练习册答案