精英家教网 > 初中数学 > 题目详情

知识迁移

当a>0且x>0时,因为()2≥0,所以x-2≥0,从而x+≥2(当x=时取等号).

记函数y=x+(a>0,x>0),由上述结论可知:当x=时,该函数有最小值为2

直接应用

已知函数y1=x(x>0)与函数y2(x>0),则当x=________时,y1+y2取得最小值为________.

变形应用

已知函数y1=x+1(x>-1)与函数y2=(x+1)2+4(x>-1),求的最小值,并指出取得该最小值时相应的x的值.

实际应用

已知某汽车的一次运输成本包含以下三个部分:一是固定费用,共360元;二是燃油费,每千米为1.6元;三是折旧费,它与路程的平方成正比,比例系数为0.001.设该汽车一次运输的路程为x千米,求当x为多少时,该汽车平均每千米的运输成本最低?最低是多少元?

答案:
解析:

  解:直接应用

  1,2(每空1分)2分

  变形应用

  解:∵;3分

  ∴有最小值为,4分

  当,即时取得该最小值;6分

  实际应用

  解:设该汽车平均每千米的运输成本为元,则;9分

  ,10分

  ∴当(千米)时,该汽车平均每千米的运输成本最低;11分

  最低成本为元.12分


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•盐城)知识迁移
   当a>0且x>0时,因为(
x
-
a
x
)
2
≥0
,所以x-2
a
+
a
x
≥0,从而x+
a
x
2
a
(当x=
a
)是取等号).
   记函数y=x+
a
x
(a>0,x>0).由上述结论可知:当x=
a
时,该函数有最小值为2
a

直接应用
   已知函数y1=x(x>0)与函数y2=
1
x
(x>0),则当x=
1
1
时,y1+y2取得最小值为
2
2

变形应用
   已知函数y1=x+1(x>-1)与函数y2=(x+1)2+4(x>-1),求
y2
y1
的最小值,并指出取得该最小值时相应的x的值.
实际应用
   已知某汽车的一次运输成本包含以下三个部分,一是固定费用,共360元;二是燃油费,每千米1.6元;三是折旧费,它与路程的平方成正比,比例系数为0.001.设该汽车一次运输的路程为x千米,求当x为多少时,该汽车平均每千米的运输成本最低?最低是多少元?

查看答案和解析>>

科目:初中数学 来源:盐城 题型:解答题

知识迁移
   当a>0且x>0时,因为(
x
-
a
x
)
2
≥0
,所以x-2
a
+
a
x
≥0,从而x+
a
x
2
a
(当x=
a
)是取等号).
   记函数y=x+
a
x
(a>0,x>0).由上述结论可知:当x=
a
时,该函数有最小值为2
a

直接应用
   已知函数y1=x(x>0)与函数y2=
1
x
(x>0),则当x=______时,y1+y2取得最小值为______.
变形应用
   已知函数y1=x+1(x>-1)与函数y2=(x+1)2+4(x>-1),求
y2
y1
的最小值,并指出取得该最小值时相应的x的值.
实际应用
   已知某汽车的一次运输成本包含以下三个部分,一是固定费用,共360元;二是燃油费,每千米1.6元;三是折旧费,它与路程的平方成正比,比例系数为0.001.设该汽车一次运输的路程为x千米,求当x为多少时,该汽车平均每千米的运输成本最低?最低是多少元?

查看答案和解析>>

科目:初中数学 来源:2013年5月中考数学模拟试卷(38)(解析版) 题型:解答题

知识迁移
   当a>0且x>0时,因为,所以x-+≥0,从而x+(当x=)是取等号).
   记函数y=x+(a>0,x>0).由上述结论可知:当x=时,该函数有最小值为2
直接应用
   已知函数y1=x(x>0)与函数y2=(x>0),则当x=______时,y1+y2取得最小值为______.
变形应用
   已知函数y1=x+1(x>-1)与函数y2=(x+1)2+4(x>-1),求的最小值,并指出取得该最小值时相应的x的值.
实际应用
   已知某汽车的一次运输成本包含以下三个部分,一是固定费用,共360元;二是燃油费,每千米1.6元;三是折旧费,它与路程的平方成正比,比例系数为0.001.设该汽车一次运输的路程为x千米,求当x为多少时,该汽车平均每千米的运输成本最低?最低是多少元?

查看答案和解析>>

科目:初中数学 来源:2013年湖南省长沙市中考数学模拟试卷(四)(解析版) 题型:解答题

知识迁移
   当a>0且x>0时,因为,所以x-+≥0,从而x+(当x=)是取等号).
   记函数y=x+(a>0,x>0).由上述结论可知:当x=时,该函数有最小值为2
直接应用
   已知函数y1=x(x>0)与函数y2=(x>0),则当x=______时,y1+y2取得最小值为______.
变形应用
   已知函数y1=x+1(x>-1)与函数y2=(x+1)2+4(x>-1),求的最小值,并指出取得该最小值时相应的x的值.
实际应用
   已知某汽车的一次运输成本包含以下三个部分,一是固定费用,共360元;二是燃油费,每千米1.6元;三是折旧费,它与路程的平方成正比,比例系数为0.001.设该汽车一次运输的路程为x千米,求当x为多少时,该汽车平均每千米的运输成本最低?最低是多少元?

查看答案和解析>>

科目:初中数学 来源:2012年江苏省盐城市中考数学试卷(解析版) 题型:解答题

知识迁移
   当a>0且x>0时,因为,所以x-+≥0,从而x+(当x=)是取等号).
   记函数y=x+(a>0,x>0).由上述结论可知:当x=时,该函数有最小值为2
直接应用
   已知函数y1=x(x>0)与函数y2=(x>0),则当x=______时,y1+y2取得最小值为______.
变形应用
   已知函数y1=x+1(x>-1)与函数y2=(x+1)2+4(x>-1),求的最小值,并指出取得该最小值时相应的x的值.
实际应用
   已知某汽车的一次运输成本包含以下三个部分,一是固定费用,共360元;二是燃油费,每千米1.6元;三是折旧费,它与路程的平方成正比,比例系数为0.001.设该汽车一次运输的路程为x千米,求当x为多少时,该汽车平均每千米的运输成本最低?最低是多少元?

查看答案和解析>>

同步练习册答案