精英家教网 > 初中数学 > 题目详情

【题目】如图所示,四边形ABCD中,ADBC,∠A90°,∠BCD90°AB7AD2BC3,试在边AB上确定点P的位置,使得以PCD为顶点的三角形是直角三角形.

【答案】在线段AB上且距离点A16处.

【解析】

分∠DPC90°,∠PDC90,∠PDC90°三种情况讨论,在边AB上确定点P的位置,根据相似三角形的性质求得AP的长,使得以PAD为顶点的三角形是直角三角形.

1)如图,当∠DPC90°时,

∴∠DPA+BPC90°

∵∠A90°

∴∠DPA+PDA90°

∴∠BPC=∠PDA

ADBC

∴∠B=180°-A=90°

∴∠A=∠B

∴△APD∽△BCP

AB=7BP=AB-APAD=2BC=3

AP27AP+60

AP1AP6

2)如图:当∠PDC90°时,过D点作DEBC于点E

AD//BC,∠A=B=BED=90°

∴四边形ABED是矩形,

DEAB7AD=BE=2

BC3

ECBC-BE=1

RtDEC中,DC2EC2+DE250

APx,则PB7x

RtPADPD2AD2+AP24+x2

RtPBCPC2BC2+PB232+7x2

RtPDCPC2PD2+DC2 ,即32+7x250+4+x2

解方程得:

3)当∠PDC90°时,

∵∠BCD90°

∴点PAB的延长线上,不合题意;

∴点P的位置有三处,能使以PAD为顶点的三角形是直角三角形,分别在线段AB上且距离点A16处.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25m),现在已备足可以砌50m长的墙的材料,试设计一种砌法,使矩形花园的面积为300m2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+cx轴于AB两点,OA=1OB=3,抛物线的顶点坐标为D14.

1)求AB两点的坐标;

2)求抛物线的表达式;

3)过点D做直线DE//y轴,交x轴于点E,P是抛物线上AD两点间的一个动点(点P不于AD两点重合),PAPB与直线DE分别交于点GF,当点P运动时,EF+EG的值是否变化,如不变,试求出该值;若变化,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P是抛物线y=﹣x2+x+2在第一象限上的点,过点P分别向x轴和y轴引垂线,垂足分别为AB,则四边形OAPB周长的最大值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB=8厘米,AC=16厘米,点PA出发,以每秒2厘米的速度向B运动,点QC同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,那么,当以APQ为顶点的三角形与△ABC相似时,运动时间为_________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,已知抛物线

(1)求抛物线的对称轴;

(2)时,设抛物线与轴交于两点(在点左侧),顶点为,若为等边三角形,求的值;

(3)(其中)且垂直轴的直线与抛物线交于两点.若对于满足条件的任意值,线段的长都不小于1,结合函数图象,直接写出的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知△ABC的三个顶点都在格点上.

1)请按下列要求画图:

将△ABC先向右平移5个单位,再向上平移1个单位,得到△A1B1C1,画出△A1B1C1

A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2

2)若(1)所得的△A1B1C1与△A2B2C2,关于点P成中心对称,直接写出对称中心P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G,

(1)如图,点D在线段CB上,四边形ACDE是正方形.

①若点G为DE的中点,求FG的长.

②若DG=GF,求BC的长.

(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有这样一道习题:如图1,已知OAOB是⊙O的半径,并且OAOBPOA上任一点(不与OA重合)BP的延长线交⊙OQ,过Q点作⊙O的切线交OA的延长线于R.

1)证明:RP=RQ

2)请探究下列变化:

A变化一:交换题设与结论.已知:如图1OAOB是⊙O的半径,并且OAOBPOA上任一点(不与OA重合)BP的延长线交⊙OQROA的延长线上一点,且RP=RQ.证明:RQ为⊙O的切线.

  

B变化二:运动探求. ①如图2,若OA向上平移,变化一中结论还成立吗?(只交待判断) 答:_________.

②如图3,如果POA的延长线上时,BP交⊙OQ,过点Q作⊙O的切线交OA的延长线于R,原题中的结论还成立吗?为什么?

查看答案和解析>>

同步练习册答案