精英家教网 > 初中数学 > 题目详情

【题目】如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为果圆.已知点A,B,C,D分别是果圆与坐标轴的交点,抛物线的解析式为y=x2-2x-3,AB为半圆的直径,则这个果圆y轴截得的弦CD的长为____

【答案】3+

【解析】连接ACBC


抛物线的解析式为yx22x3,

D的坐标为(0,3),

OD的长为3,

y=0,则0= x22x3,

解得:x=13,

A(1,0),B(3,0)

AO=1,BO=3,

AB为半圆的直径,

∴∠ACB=90°,

∴∠ACO+∠BCO=90°.

COAB

∴∠AOC=∠BOC=90°,

∴∠ACO+∠CAO=90°,

∴∠CAO=∠BOC,

∴△AOC∽△COB,

,

CO2=AO·BO=1×3=3,

CO=

CD=CO+OD=3+

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】解决问题.

学校要购买A,B两种型号的足球,按体育器材门市足球销售价格(单价)计算:若买2个A型足球和3个B型足球,则要花费370元,若买3个A型足球和1个B型足球,则要花费240元.

(1)求A,B两种型号足球的销售价格各是多少元/个?

(2)学校拟向该体育器材门市购买A,B两种型号的足球共20个,且费用不低于1300元,不超过1500元,则有哪几种购球方案?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,已知点,试分别根据下列条件,求出点的坐标。

1)点轴上;

2)点横坐标比纵坐标大3

3)点在过点,且与轴平行的直线上。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABCD,分别探究下面两个图形中∠APC和∠PAB、∠PCD的关系,请从你所得两个关系中选出任意一个,说明你探究的结论的正确性.

结论:(1)

(2)

选择结论: ,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,点P是线段AD上的一个动点,OBD的中点,PO的延长线交BCQ

1)求证:OP=OQ

2)若AD=8cmAB=6cm,点P从点A出发,以 的速度向点D 运动(不与D重合).设点P运动的时间为t秒,请用t表示PD的长;

3)当t为何值时,四边形PBQD是菱形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P是反比例函数y= (k>0)的图像在第一象限上的一个动点,过P作z轴的垂线,垂足为M,已知△POM的面积为2.

(l)求k的值;

(2)若直线y=x与反比例函数y= 的图像在第一象限内交于点A,求过点A和点B(0,-2)的直线表达式;

(3)过A作AC⊥y轴于点C,若△ABC与△POM相似,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】乐乐家附近的商场为了吸引顾客,设立了一个可以自由转动的转盘,AB为转盘直径,如图所示,并规定:顾客消费50元(含50元)以上,就能获得一次转盘的机会,如果转盘停止后,指针正好对准9折、8折、7折区域,顾客就可以获得相应的优惠

1)某顾客消费40元,是否可以获得转盘的机会?

2)某顾客正好消费66元,他转一次转盘,获得三种打折优惠的概率分别是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知方程组的解满足x为非正数,y为负数.

(1)m的取值范围;

(2)化简:|m3||m+2|

(3)m的取值范围内,当m为何整数时,不等式2mx+x2m+1的解为x1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某中学举办网络安全知识答题竞赛,初、高中部根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图所示.

平均分(分)

中位数(分)

众数(分)

方差(

初中部

a

85

b

高中部

85

c

100

160

1)根据图示计算出abc的值;

2)结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?

3)计算初中代表队决赛成绩的方差,并判断哪一个代表队选手成绩较为稳定.

查看答案和解析>>

同步练习册答案