精英家教网 > 初中数学 > 题目详情
如图,已知反比例函数y=
k2x
和一次函数y=2x-1图象交于A(1,b)点,且一次函数的图象经过(2,b+k)点.
(1)求A点坐标及反比例函数的解析式;
(2)请问:在x轴上是否存在点P,使△AOP为等腰三角形?若存在,把符合条件的P点坐标都求出来;若不存在,请说明理由.
分析:(1)把A(1,b)和(2,b+k)代入y=2x-1可得
b=2×1-1
b+k=2×2-1
,解方程组可得k、b的值,进而得到反比例函数的解析式为y=
1
x

(2)首先根据A点坐标计算出AO的长,然后分情况讨论:①当OA为腰时,由OA=OP,由OA=AP;②当OA为底时分别求出坐标即可.
解答:解:(1)由题意得
b=2×1-1
b+k=2×2-1

解得
b=1
k=2

∴点A的坐标为(1,1)
∴反比例函数的解析式为y=
1
x


(2)∵A(1,1),
OA=
12+12
=
2

∴OA与x轴所夹锐角为45°,
①当OA为腰时,由OA=OP得P1
2
,0),P2(-
2
,0);由OA=AP得P3(2,0).
②当OA为底时,得P4(1,0).
∴符合条件的点有4个,分别是(
2
,0),(-
2
,0),(2,0),(1,0).
点评:此题主要考查了反比例函数综合,以及等腰三角形的判定,关键是正确求出A点坐标,在使△AOP为等腰三角形时,要注意分情况讨论,不要漏解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知反比例函数y=
m
x
图象与一次函数y=kx+b的图象均经过A(-1,4)和B(a,
4
5
)两点,
(1)求B点的坐标及两个函数的解析式;
(2)若一次函数y=kx+b的图象与x轴交于点C,求C点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知反比例函数y=
kx
(k>0)的图象经过点A(2,m),过点A作AB⊥x轴于点B,且S△AOB=3.若一次函数y=ax+1的图象经过点A,并且与x轴相交于点C,求AO:AC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知反比例函数y=
kx
的图象与一次函数y=ax+b的图象交于M(2,m)和N(-1,-4)两点.
(1)求这两个函数的解析式;
(2)求△MON的面积;
(3)请判断点P(4,1)是否在这个反比例函数的图象上,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知反比例函数y1=
kx
和一次函数y2=ax+b的图象相交于点A和点D,且点A的横坐标为1,点D的纵坐标为-1.过点A作AB⊥x轴于点B,△AOB的面积为1.
(1)求反比例函数和一次函数的解析式.
(2)若一次函数y2=ax+b的图象与x轴相交于点C,求∠ACO的度数.
(3)结合图象直接写出:当y1>y2时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知反比例函数y=
k
x
的图象经过第二象限内的点A(-1,m),AB⊥x轴于点B,△AOB的面积为2.若直线y=ax+b经过点A,并且经过反比例函数y=
k
x
的图象上另一点C(n,一2).
(1)求直线y=ax+b的解析式;
(2)设直线y=ax+b与x轴交于点M,求AM的长;
(3)在双曲线上是否存在点P,使得△MBP的面积为8?若存在请求P点坐标;若不存在请说明理由.

查看答案和解析>>

同步练习册答案