精英家教网 > 初中数学 > 题目详情
26、如图,在正方形ABCD中,E是AB边上任意一点,∠ECF=45°,CF交AD于点F,将△CBE绕点C顺时针旋转到△CDP,点P恰好在AD的延长线上.
(1)求证:EF=PF;
(2)直线EF与以C为圆心,CD为半径的圆相切吗?为什么?
分析:(1)根据已知判定△ECF≌△PCF,从而得到EF=PF.
(2)过点C作CQ⊥EF于点Q,由(1)得,△ECF≌△PCF又CQ⊥EF,CD⊥FP,从而得到直线EF与以C为圆心,CD为半径的圆相切.(根据切线的判定定理)
解答:证明:(1)在正方形ABCD中,∠BCD=90°,
依题意△CDP是△CBE绕点C旋转90°得到,
∴∠ECP=90°,CE=CP.
∵∠ECF=45°,
∴∠FCP=∠ECP-∠ECF=90°-45°=45°.
∴∠ECF=∠FCP,CF=CF.
∴△ECF≌△PCF.
∴EF=PF.

解:(2)相切.
过点C作CQ⊥EF于点Q,
由(1)得,△ECF≌△PCF.
∴∠EFC=∠PFC.
∵CQ⊥EF,CD⊥FP,
∴CQ=CD.
∴直线EF与以C为圆心,CD为半径的圆相切.
点评:本题考查旋转的性质,全等三角形的判定和性质,以及切线的判定性质的综合运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图:在正方形网格上有△ABC,△DEF,说明这两个三角形相似,并求出它们的相似比.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线精英家教网,交BC于点E.
(1)求证:点E是边BC的中点;
(2)若EC=3,BD=2
6
,求⊙O的直径AC的长度;
(3)若以点O,D,E,C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,在Rt△ABC中,∠BAC=90°,AD=CD,点E是边AC的中点,连接DE,DE的延长线与边BC相交于点F,AG∥BC,交DE于点G,连接AF、CG.
(1)求证:AF=BF;
(2)如果AB=AC,求证:四边形AFCG是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•陕西)如图,正三角形ABC的边长为3+
3

(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);
(2)求(1)中作出的正方形E′F′P′N′的边长;
(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6
2
,求另一直角边BC的长.

查看答案和解析>>

同步练习册答案