精英家教网 > 初中数学 > 题目详情
(2010•鄂州)如图,一面利用墙,用篱笆围成一个外形为矩形的花圃,花圃的面积为S平方米,平行于院墙的一边长为x米.
(1)若院墙可利用最大长度为10米,篱笆长为24米,花圃中间用一道篱笆间隔成两个小矩形,求S与x之间函数关系.

(2)在(1)的条件下,围成的花圃面积为45平方米时,求AB的长.能否围成面积比45平方米更大的花圃?如果能,应该怎么围?如果不能请说明理由.
(3)当院墙可利用最大长度为40米,篱笆长为77米,中间建n道篱笆间隔成小矩形,当这些小矩形为正方形,且x为正整数时,请直接写出一组满足条件的x,n的值.

【答案】分析:(1)根据等量关系“花圃的面积=花圃的长×花圃的宽”列出函数关系式,并确定自变量的取值范围;
(2)令S=45,将其代入所求得的函数关系式里求得x,再算出AB的长.通过函数关系式求得S的最大值,得出能否围成面积比45平方米更大的花圃;
(3)根据等量关系“花圃的长=(n+1)×花圃的宽”写出符合题中条件的x,n.
解答:解:(1)由题意得:
S=x×=x2+8x  (0<x≤10)

(2)由S=x2+8x=45,
解得;x1=15(舍去),x2=9,
∴x=9,AB==5,
又S=x2+8x=(x-12)2+48,0<x≤10,
∵当x≤10时,S随x的增大而增大,
∴当x=10米时,S最大,为平方米>45平方米,
∴平行于院墙的一边长为10时,就能围成面积比45平方米更大的花圃.

(3)根据题意可得:=
n=4;x=35
点评:本题考查了同学们列函数关系式并求解最值的能力,同时需要注意自变量的取值范围.
练习册系列答案
相关习题

科目:初中数学 来源:2010年全国中考数学试题汇编《二次函数》(09)(解析版) 题型:解答题

(2010•鄂州)如图,在直角坐标系中,A(-1,0),B(0,2),一动点P沿过B点且垂直于AB的射线BM运动,P点的运动速度为每秒1个单位长度,射线BM与x轴交于点C.
(1)求点C的坐标.
(2)求过点A、B、C三点的抛物线的解析式.
(3)若P点开始运动时,Q点也同时从C点出发,以P点相同的速度沿x轴负方向向点A运动,t秒后,以P、Q、C为顶点的三角形是等腰三角形.(点P到点C时停止运动,点Q也同时停止运动),求t的值.
(4)在(2)(3)的条件下,当CQ=CP时,求直线OP与抛物线的交点坐标.

查看答案和解析>>

科目:初中数学 来源:2010年湖北省鄂州市中考数学试卷(解析版) 题型:解答题

(2010•鄂州)如图,在直角坐标系中,A(-1,0),B(0,2),一动点P沿过B点且垂直于AB的射线BM运动,P点的运动速度为每秒1个单位长度,射线BM与x轴交于点C.
(1)求点C的坐标.
(2)求过点A、B、C三点的抛物线的解析式.
(3)若P点开始运动时,Q点也同时从C点出发,以P点相同的速度沿x轴负方向向点A运动,t秒后,以P、Q、C为顶点的三角形是等腰三角形.(点P到点C时停止运动,点Q也同时停止运动),求t的值.
(4)在(2)(3)的条件下,当CQ=CP时,求直线OP与抛物线的交点坐标.

查看答案和解析>>

科目:初中数学 来源:2009年全国中考数学试题汇编《锐角三角函数》(07)(解析版) 题型:解答题

(2010•鄂州)如图,一艘核潜艇在海面下500米A点处测得俯角为30°正前方的海底有黑匣子信号发出,继续在同一深度直线航行4000米后再次在B点处测得俯角为60°正前方的海底有黑匣子信号发出,求海底黑匣子C点处距离海面的深度?(精确到米,参考数据:≈1.414,≈1.732,≈2.236)

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《锐角三角函数》(02)(解析版) 题型:填空题

(2010•鄂州)如图,四边形ABCD中,AB=AC=AD,E是CB的中点,AE=EC,∠BAC=3∠DBC,BD=6+6,则AB=   

查看答案和解析>>

科目:初中数学 来源:2010年湖北省鄂州市中考数学试卷(解析版) 题型:选择题

(2010•鄂州)如图,平面直角坐标系中,∠ABO=90°,将直角△AOB绕O点顺时针旋转,使点B落在x轴上的点B1处,点A落在A1处,若B点的坐标为(),则点A1的坐标是( )

A.(3,-4)
B.(4,-3)
C.(5,-3)
D.(3,-5)

查看答案和解析>>

同步练习册答案