分析 先根据矩形的性质得到AD=BC=10,DC=AB=8,∠B=∠D=∠C=90°,再根据折叠的性质得AF=AD=10,DE=EF,则可利用勾股定理计算出BF,从而得到CF的长,设CE=x,则DE=EF=8-x,然后在Rt△CEF中利用勾股定理得到关于x的方程,从而解方程求出x即可.
解答 解:∵四边形ABCD为矩形,
∴AD=BC=10,DC=AB=8,∠B=∠D=∠C=90°,
∵沿AE折叠时,顶点D落在BC边上的点F处,
∴AF=AD=10,DE=EF,
在Rt△ABF中,BF=$\sqrt{A{F}^{2}-A{B}^{2}}$=$\sqrt{1{0}^{2}-{8}^{2}}$=6,
∴CF=BC-BF=10-6=4,
设CE=x,则DE=EF=8-x,
在Rt△CEF中,∵CF2+CE2=EF2,
∴42+x2=(8-x)2,解得x=5,
即CE的长为3.
点评 本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解决问题的关键是教授出CF和用CE表示EF.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com