【题目】定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.
(1)已知:如图1,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度数.
(2)在探究“等对角四边形”性质时:张同学画了一个“等对角四边形”ABCD(如图2),其中∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立.请你证明此结论;
(3)已知:在“等对角四边形”ABCD中,∠DAB=45°,∠ABC=90°,AB=5,AD=4 .则对角线AC的长为 .
【答案】
(1)
解:∵四边形ABCD是“等对角四边形”,∠A≠∠C,
∴∠D=∠B=80°,
∴∠C=360°﹣∠A﹣∠B﹣∠D=360°﹣70°﹣80°﹣80°=130°;
(2)
证明:如图2所示,连接BD,
∵AB=AD,
∴∠ABD=∠ADB,
∵∠ABC=∠ADC,
∴∠ABC﹣∠ABD=∠ADC﹣∠ADB,
∴∠CBD=∠CDB,
∴CB=CD;
(3)
【解析】(3)解:分两种情况:
①当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,如图3所示:
∵∠ABC=90°,∠DAB=45°,AB=5,∴∠E=45°,
∴AE= AB=5 ,
∴DE=AE﹣AD=5 ﹣4 ═ ,
∵∠EDC=90°,∠E=45°,
∴CD= ,
∴AC= = = ;
②当∠BCD=∠DAB=45°时,
过点D作DM⊥AB于点M,DN⊥BC于点N,如图4所示:
则∠AMD=90°,四边形BNDM是矩形,
∵∠DAB=45°,
∴∠ADM=45°,
∴AM=DM= AD=4,
∴BM=AB﹣AM=5﹣4=1,
∵四边形BNDM是矩形,
∴DN=BM=1,BN=DM=4,
∵∠BCD=45°,
∴CN=DN=1,
∴BC=CN+BN=5,
∴AC= =5 ;
故此情况不存在.
综上所述:AC的长为 ,
所以答案是: .
(1)根据四边形ABCD是“等对角四边形”得出∠D=∠B=80°,根据多边形内角和定理求出∠C即可;(2)连接BD,由AB=AD,得出∠ABD=∠ADB,证出∠CBD=∠CDB,即可得出CB=CD;(3)分两种情况:①当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,先用等腰直角三角形的性质求出AE,得出DE,再用三角函数求出CD,由勾股定理求出AC;②当∠BCD=∠DAB=45°时,过点D作DM⊥AB于点M,DN⊥BC于点N,则∠AMD=90°,四边形BNDM是矩形,先求出AM、DM,再由矩形的性质得出DN=BM=1,BN=DM=4,求出CN、BC,根据勾股定理求出AC即可.
【考点精析】通过灵活运用等腰直角三角形和勾股定理的概念,掌握等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°;直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2即可以解答此题.
科目:初中数学 来源: 题型:
【题目】如图,△ABC是一张纸片,∠C=90°,AC=6,BC=8,现将其折叠.使点B与点A重合,折痕为DE,则DE的长为( )
A. 1.75 B. 3 C. 3.75 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b的图象与反比例函数 的图象交于A(﹣2,1),B(1,n)两点.
(1)试确定上述反比例函数和一次函数的表达式;
(2)求△AOB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解:
我们知道:一条线段有两个端点,线段和线段表示同一条线段. 若在直线上取了三个不同的点,则以它们为端点的线段共有 条;若取了四个不同的点,则共有线段 条;…;依此类推,取了个不同的点,共有线段条.(用含的代数式表示)
类比探究:
以一个锐角的顶点为端点向这个角的内部引射线.
(1)若引出两条射线,则所得图形中共有 个锐角;
(2)若引出条射线,则所得图形中共有 个锐角.(用含的代数式表示)
拓展应用:
一条铁路上共有8个火车站,若一列火车往返过程中必须停靠每个车站,则铁路局需为这条线路准备多少种车票?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】按如图所示的程序计算,若开始输入的x的值为18,我们发现第1次得到的结果为9;第2次得到的结果为14;第3次得到的结果为7……请你探索第2016次得到的结果为.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰三角形ABC的底边AB在x轴上,点B与原点O重合,已知点A(﹣2,0),AC= ,将△ABC沿x轴向右平移,当点C的对应点C1落在直线y=2x﹣4上时,则平移的距离是( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:
一百馒头一百僧,大僧三个更无争,
小僧三人分一个,大小和尚得几丁.
意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是( )
A. 大和尚25人,小和尚75人 B. 大和尚75人,小和尚25人
C. 大和尚50人,小和尚50人 D. 大、小和尚各100人
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设A=÷(a﹣).
(1)化简A;
(2)当a=3时,记此时A的值为f(3);当a=4时,记此时A的值为f(4);…解关于x的不等式:≤f(3)+f(4)+…+f(11),并将解集在数轴上表示出来.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边△ABC边长为2,四边形DEFG是平行四边形,DG=2,DE=3,∠GDE=60°,BC和DE在同一条直线上,且点C与点D重合,现将△ABC沿D→E的方向以每秒1个单位的速度匀速运动,当点B与点E重合时停止,则在这个运动过程中,△ABC与四边形DEFG的重合部分的面积S与运动时间t之间的函数关系图象大致是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com