精英家教网 > 初中数学 > 题目详情

【题目】如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADF的面积为S1 , △CEF的面积为S2 , 若SABC=12,则S1﹣S2的值为

【答案】2
【解析】解:∵BE=CE, ∴BE= BC,
∵SABC=12,
∴SABE= SABC= ×12=6.
∵AD=2BD,SABC=12,
∴SBCD= SABC=4,
∵SABE﹣SBCD=(SADF+S四边形BEFD)﹣(SCEF+S四边形BEFD)=SADF﹣SCEF
即SADF﹣SCEF=SABE﹣SBCD=6﹣4=2.
所以答案是2.
【考点精析】解答此题的关键在于理解三角形的面积的相关知识,掌握三角形的面积=1/2×底×高.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】对于平面图形上的任意两点P,Q,如果经过某种变换(如:平移、旋转、轴对称等)得到新图形上的对应点P′,Q′,保持P P′= Q Q′,我们把这种对应点连线相等的变换称为“同步变换”。对于三种变换: ①平移、②旋转、③轴对称,其中一定是“同步变换”的有(填序号)。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线y=﹣x+4与两坐标轴分别相交于点A,B两点,点C是线段AB上任意一点,过C分别作CD⊥x轴于点D,CE⊥y轴于点E.双曲线 与CD,CE分别交于点P,Q两点,若四边形ODCE为正方形,且 ,则k的值是( )

A.4
B.2
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正六边形的每个内角的度数是度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在平行四边形ABCD中,点E在直线AD上,AE=AD,连接CE交BD于点F,则EF:FC的值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在△ABO中,∠OAB=90°,∠AOB=30°,OB=8.以OB为一边,在△OAB外作等边三角形OBC,D是OB的中点,连接AD并延长交OC于E.

(1)求点B的坐标;

(2)求证:四边形ABCE是平行四边形;

(3)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线y=﹣x+4与两坐标轴分别相交于点A,B两点,点C是线段AB上任意一点,过C分别作CD⊥x轴于点D,CE⊥y轴于点E.双曲线 与CD,CE分别交于点P,Q两点,若四边形ODCE为正方形,且 ,则k的值是( )

A.4
B.2
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,P(2,2),点A在x轴正半轴上运动,点B在y轴负半轴上运动,且PA=PB.
(1)求证:PA⊥PB;
(2)若点A(8,0),求点B的坐标;
(3)求OA﹣OB的值;
(4)如图2,若点B在y轴正半轴上运动时,直接写出OA+OB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC,∠C=90°,AC<BC.D为BC上一点,且到A,B两点的距离相等.
(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);
(2)连接AD,若∠B=35°,求∠CAD的度数.

查看答案和解析>>

同步练习册答案