精英家教网 > 初中数学 > 题目详情
17.如图,正方形ABCD的边长为12,点E是射线BC上的一个动点,连接AE并延长,交射线DC于点F,将△ABE沿直线AE翻折,点B落在点B'处.
(1)当$\frac{BE}{CE}$=1时,如图1,延长AB′,交CD于点M,
①CF的长为12;
②求证:AM=FM.
(2)当点B′恰好落在对角线AC上时,如图2,此时CF的长为12$\sqrt{2}$;$\frac{BE}{CE}$=$\frac{1}{2}\sqrt{2}$.
(3)当$\frac{BE}{CE}$=3时,求∠DA B'的正弦值.

分析 (1)①根据△ABE∽△FCE,可得$\frac{CF}{BA}$=$\frac{CE}{BE}$,即$\frac{CF}{12}$=1,进而得到CF的长;②根据四边形ABCD为正方形,可得∠F=∠BAF,由折叠可知:∠BAF=∠MAF,即可得出∠F=∠MAF,进而得到AM=FM.
(2)根据∠CAE=∠CFE,可得FC=AC,再根据等腰Rt△ABC中,AC=$\sqrt{2}$AB=12$\sqrt{2}$,即可得到CF的长为12$\sqrt{2}$;由折叠可得,BE=B'E,再根据等腰Rt△CEB'中,CE=$\sqrt{2}$B'E=$\sqrt{2}$BE,即可得出$\frac{BE}{CE}$=$\frac{1}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$;
(3)分两种情况讨论:①点E在线段BC上,②点E在BC的延长线上,分别设DM=x,根据Rt△ADM中,AM2=AD2+DM2,得到关于x的方程,求得x的值,最后根据sin∠DA B'=$\frac{DM}{AM}$进行计算即可.

解答 解:(1)①如图1,由AB∥CF可得:△ABE∽△FCE,
∴$\frac{CF}{BA}$=$\frac{CE}{BE}$,即$\frac{CF}{12}$=1,
∴CF的长为12,
故答案为:12;

②证明:∵四边形ABCD为正方形,
∴AB∥CD,
∴∠F=∠BAF,
由折叠可知:∠BAF=∠MAF,
∴∠F=∠MAF,
∴AM=FM.

(2)如图2,由折叠可得,∠BAE=∠CAE,
由AB∥CD可得,∠BAE=∠CFE,
∴∠CAE=∠CFE,
∴FC=AC,
又∵等腰Rt△ABC中,AC=$\sqrt{2}$AB=12$\sqrt{2}$,
∴CF=12$\sqrt{2}$,
即CF的长为12$\sqrt{2}$;
由折叠可得,BE=B'E,
∴等腰Rt△CEB'中,CE=$\sqrt{2}$B'E=$\sqrt{2}$BE,
∴$\frac{BE}{CE}$=$\frac{1}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$;
故答案为:12$\sqrt{2}$,$\frac{\sqrt{2}}{2}$;

(3)①当点E在线段BC上时,如图3,A B'的延长线交CD于点M,
由AB∥CF可得:△ABE∽△FCE,
∴$\frac{AB}{CF}$=$\frac{BE}{CE}$,即$\frac{12}{CF}$=3,
∴CF=4,
由(1)②可知AM=FM.
设DM=x,则MC=12-x,则AM=FM=16-x,
在Rt△ADM中,AM2=AD2+DM2,即(16-x)2=122+x2
解得:x=$\frac{7}{2}$,
则AM=16-x=16-$\frac{7}{2}$=$\frac{25}{2}$,
∴sin∠DA B'=$\frac{DM}{AM}$=$\frac{7}{25}$.

②当点E在BC的延长线上时,如图4,
由AB∥CF可得:△ABE∽△FCE,
∴$\frac{AB}{CF}$=$\frac{BE}{CE}$,即$\frac{12}{CF}$=3,
∴CF=4,
则DF=12-4=8,
设DM=x,则AM=FM=8+x,
在Rt△ADM中,AM2=AD2+DM2,即(8+x)2=122+x2
解得:x=5,
则AM=8+x=13,
∴sin∠DA B'=$\frac{DM}{AM}$=$\frac{5}{13}$.
综上所述:当$\frac{BE}{CE}$=3时,∠DA B'的正弦值为$\frac{7}{25}$或$\frac{5}{13}$.

点评 本题属于相似形综合题,主要考查了相似三角形的判定与性质,正方形的性质,勾股定理以及解直角三角形的综合应用,解决问题(3)的关键是运用分类讨论思想,依据勾股定理列方程进行计算求解,解题时注意分类思想与方程思想的运用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.计算:(-1)2017+2•cos60°-${(-\frac{1}{2})}^{-2}$+${(\sqrt{3}-\sqrt{2})}^{0}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.若一组数据2,3,4,5,x的方差与另一组数据25,26,27,28,29的方差相等,则x的值为(  )
A.1B.6C.1或6D.5或6

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.下列各数中,属于无理数的是(  )
A.$\sqrt{4}$B.-2C.πD.0

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.梅梅以每件6元的价格购进某商品若干件到市场去销售,销售金额y(元)与销售量x(件)的函数关系的图象如图所示,则降价后每件商品销售的价格为(  )
A.5元B.15元C.12.5元D.10元

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.估计$\sqrt{41}$-2的值(  )
A.在4和5之间B.在3和4之间C.在2和3之间D.在1和2之间

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,一条抛物线经过原点和点C(8,0),A、B是该抛物线上的两点,AB∥x轴,点A坐标为(3,4),点E在线段OC上,点F在线段BC上,且满足∠BEF=∠AOC.
(1)求抛物线的解析式;
(2)若四边形OABE的面积为14,求S△ECF
(3)是否存在点E,使得△BEF为等腰三角形?若存在,求点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.如图,点B、C把弧线AD分成三等分,ED是⊙O的切线,过点B、C分别作半径的垂线段,已知∠E=45°,半径OD=2,则图中阴影部分的面积是(  )
A.$\frac{π}{8}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.π

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.将抛物线y=-2x2向右平移1个单位长度,再向上平移1个单位长度所得的抛物线解析式为(  )
A.y=-2(x+1)2B.y=-2(x+1)2+2C.y=-2(x-1)2+2D.y=-2(x-1)2+1

查看答案和解析>>

同步练习册答案