分析 由在△ABC中,PM、QN分别是AB、AC的垂直平分线,根据线段垂直平分线的性质,可求得∠PAB=∠B,∠CAQ=∠C,又由∠BAC=110°,易求得∠PAB+∠CAQ的度数,继而求得∠PAQ的度数,根据线段垂直平分线的性质得到PA=PB,AQ=CQ,等量代换即可得到结论.
解答 解:∵在△ABC中,PM、QN分别是AB、AC的垂直平分线,
∴PA=PB,AQ=CQ,
∴∠PAB=∠B,∠CAQ=∠C,
∵∠BAC=100°,
∴∠B+∠C=180°-∠BAC=80°,
∴∠PAB=∠CAQ=80°,
∴∠PAQ=∠BAC-(∠PAB+∠CAQ)=100°-80°=20°,
∵PA=PB,AQ=CQ,
∴△PAQ的周长=PA+PQ+AQ=PB+PQ+CQ=BC=10,
故答案为:20°,10.
点评 此题考查了线段垂直平分线的性质以及三角形内角和定理.此题难度不大,熟练掌握线段垂直平分线的性质是解题的关键.
科目:初中数学 来源: 题型:选择题
A. | ①②③④ | B. | ①②③ | C. | ①②④ | D. | ①②③④ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com