精英家教网 > 初中数学 > 题目详情
15.现在的乐陵已经实现村村通公路,现有两个城镇A、B与两条公路ME,MF位置如图所示,其中ME是东西方向的公路.现电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A、B的距离必须相等,到两条公路ME,MF的距离也必须相等,且在∠FME的内部.
(1)那么点C应选在何处?请在图中,用尺规作图找出符合条件的点C.(不写已知、求作、作法,只保留作图痕迹)
(2)设AB的垂直平分线交ME于点N,且MN=4($\sqrt{3}$+1)km,在M处测得点C位于点M的北偏东60°方向,在N处测得点C位于点N的北偏西45°方向,求点C到公路ME的距离.

分析 (1)依题意找出点C如图所示,
(2)先判断出∠CMN=30°,∠CND=45°,再用三角函数得出MD=$\sqrt{3}$CD;ND=CD即可.

解答 解:(1)如图:

∴点C就是所求作的点;
(2)如下图,作CD⊥MN于点D,

由题意得:∠CMN=30°,∠CND=45°,
∵在Rt△CMD中,$\frac{CD}{MD}$=tan∠CMN,
∴MD=$\frac{CD}{\frac{\sqrt{3}}{3}}$=$\sqrt{3}$CD;
∵在Rt△CND中,$\frac{CD}{DN}$=tan∠CNM,
∴ND=$\frac{CD}{1}$=CD;
∵MN=2($\sqrt{3}$+1)km,
∴MN=MD+DN=CD+$\sqrt{3}$CD=4($\sqrt{3}$+1)km,
解得:CD=4km.
∴点C到公路ME的距离为4km.

点评 此题是解直角三角形,主要考查了尺规作图中的角平分线和中垂线,锐角三角函数,解本题的关键是用锐角三角函数判断出ND=CD,MD=$\sqrt{3}$CD.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.如图,在半径为2的扇形AOB中,∠AOB=120°,点C是弧AB上的一个动点,(不与点A、B重合),OD⊥AC,OE⊥BC,垂足分别为D、E.
(1)当点C是弧AB中点时(如图①),求线段OD的长度;
(2)观察图②,点C在弧AB上运动,△DOE的边、角有哪些保持不变?求出不变的量;
(3)设OD=x,△DOE的面积为y,求y关于x的函数关系式,并写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.若4×5x+3=n,求5x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图1,矩形ABCD中,AD=4cm,AB=2cm,对角线AC、BD交于点O,过点O作OE⊥AD于点E
(1)求OE的长;
(2)如图2,动点P从点D出发沿DC向点C运动,当点P运动到何位置时,四边形OEDP为矩形?
(3)如图3,若动点P、Q分别从点D、E出发,以1cm/s的速度分别沿射线DC、射线ED的方向移动,设PQ=y,试求出y关于时间t的函数关系式,并猜想是否存在某一时刻,使PQ=BD?如果存在,请直接写出t值;如果不存在,说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.如图,在平行四边形ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是(  )
①∠DCF=$\frac{1}{2}$∠BCD;②EF=CF;③∠DFE=3∠AEF;④S△BEC=2S△CEF
A.①②③B.②③④C.①②④D.①③④

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图1,小东将一张长方形纸片ABCD按如下方式进行折叠;在纸片的一边BC上分别选取点P、Q,使得BP=CQ,连结AP、DQ,将△ABP、△DCQ分别沿AP、DQ折叠得△APM、△PQN,连结MN,小东发现线段MN的位置和长度随着点P、Q的位置发生改变.
【规律探索】
(1)图1中,过点M、N分别画ME⊥BC于点E,NF⊥BC于点F,求证:ME=NF.
【解决问题】
(2)如图1,若AB=6,BC=10$\sqrt{3}$,∠APB=60°,求线段MN的长;
(3)如图2,若AB=6,∠APB=30°时,四边形PQMN是矩形,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.化简$\sqrt{5}$×$\sqrt{\frac{9}{20}}$结果是(  )
A.$\frac{3}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{5\sqrt{3}}{2}$D.$\frac{3}{10}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.请叙述三角形的中位线定律,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.计算与化简
(1)($\frac{1}{3}$)-1÷(4-π)0-(-2)2
(2)899×901+1(用乘法公式计算)
(3)(a+3)(2a-1)-a(a-2);
(4)先化简,再求值x(x+2y)-(x-2)2-2xy,其中x=-$\frac{1}{5}$,y=5.

查看答案和解析>>

同步练习册答案