精英家教网 > 初中数学 > 题目详情
精英家教网已知:如图,BD是AC边上的高,DE⊥BC于E,BE:EC=5:1.若AD=2,AB=8.
求:CD的长.
分析:根据勾股定理进而先求出BD的长,设BE=5x,CE=x,可求出DE的长,根据相似三角形对应边成比例可求解.
解答:解:∵DE⊥BC,AD=2,AB=8.
∴BD=
AB2-AD2
=
82-22
=2
15

∵∠DEB=∠DEC=90°,∠CDE=∠EDB,
∴△CDE∽△EDB,
设BE=5x,CE=x,
∴DE=
5
x,
BD
CD
=
BE
DE

2
15
CD
=
5x
5
x

CD=2
3
点评:本题考查勾股定理以及相似三角形的判定和性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图,BD是⊙O的直径,过圆上一点A作⊙O的切线交DB的延长线于P,过B点作BC∥P精英家教网A交⊙O于C,连接AB、AC.
(1)求证:AB=AC;
(2)若PA=10,PB=5,求⊙O的半径和AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

21、已知:如图,BD是△ABC的中线,延长BD至E,使得DE=BD,连接AE,CE.求证:∠BAE=∠BCE.

查看答案和解析>>

科目:初中数学 来源: 题型:

22、已知,如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是M、N.试说明:PM=PN.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,BD是△ABC的角平分线,AB=AC,
(1)若BC=AB+AD,请你猜想∠A的度数,并证明;
(2)若BC=BA+CD,求∠A的度数?
(3)若∠A=100°,求证:BC=BD+DA.

查看答案和解析>>

同步练习册答案