精英家教网 > 初中数学 > 题目详情
8.下列式子中,正确的是(  )
A.$\sqrt{25}$=±5B.±$\sqrt{25}$=5C.$\sqrt{{({-5})}^2}$=5D.$\sqrt{{({-3})}^2}$=-3

分析 根据算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.

解答 解:A、$\sqrt{25}$=5,故本选项错误;
B、±$\sqrt{25}$=±5,故本选项错误;
C、$\sqrt{(-5)^{2}}$=$\sqrt{25}$=5,故本选项正确;
D、$\sqrt{(-3)^{2}}$=$\sqrt{9}$=3,故本选项错误;
故选C.

点评 此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

18.计算(-2xy32=4x2y6

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,△ABC中,∠B=26°,∠C=70°,AD平分∠BAC,AE⊥BC于E,EF⊥AD于F,求∠DEF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.在一次活动中,主办方共准备了3600盆甲种花和2900盆乙种花,计划用甲、乙两种花搭造出A、B两种园艺造型共50个.搭造要求的花盆数如下表所示:
造型
A90盆30盆
B40盆100盆
请问符合要求的搭造方案有几种?请写出具体的方案.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.方程组$\left\{\begin{array}{l}x-y=1\\ ax+by=-1\end{array}\right.$和方程组$\left\{\begin{array}{l}{2x+y=8}\\{ax-by=10}\end{array}\right.$的解相同,则a-b=$\frac{17}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知:A(4,0),B(3,y),点C在x轴上,AC=5.
(1)直接写出点C的坐标;
(2)若S△ABC=10,求点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,四边形ABCD中,对角线AC⊥BD,且AC=BD,点E、F、G、H分别是AD、AB、BC、CD的中点.求证:四边形EFGH是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.计算:
(1)(2$\sqrt{3}-\sqrt{6}$)×$\sqrt{12}$;
(2)($\sqrt{48}-\sqrt{27}+$4$\sqrt{15}$)÷3;
(3)(2$\sqrt{3}$-5$\sqrt{2}$)($\sqrt{3}$-2$\sqrt{2}$);
(4)(2$\sqrt{3}$+3$\sqrt{2}$)(2$\sqrt{3}$-3$\sqrt{2}$);
(5)(2$\sqrt{3}$-1)2
(6)($\frac{\sqrt{5}+1}{2}$)2+($\frac{\sqrt{5}-1}{2}$)2
(7)($\frac{2-\sqrt{3}}{2}$)2-($\frac{2+\sqrt{3}}{2}$)2
(8)(3+2$\sqrt{5}$)2-(4+$\sqrt{7}$)(4-$\sqrt{7}$);
(9)$\frac{3}{2}$$\sqrt{20}$•(-$\frac{1}{3}$$\sqrt{48}$);
(10)$\sqrt{\frac{24}{5}}$×3$\sqrt{5}$÷$\sqrt{6}$;
(11)$\sqrt{50}$-$\frac{1}{\sqrt{5}}$+2$\sqrt{20}$-$\sqrt{45}$+$\sqrt{\frac{1}{2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.(1)如图1,在平面直角坐标系中,直线y=2x-6与x轴、y轴分别相交于点A、B,点C在x轴上,若S△ABC=2S△AOB,试求点C的坐标;
(2)如图2,在直角坐标系中,矩形OABC的顶点B的坐标为(15,6),直线y=kx-2恰好将矩形OABC分为面积相等的两部分,试求k的值;
(3)如图3,直线y=-$\frac{\sqrt{3}}{3}$x+1与x轴、y轴分别相交于点A、B,以线段AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90°,如果在第二象限内有一点P(a,$\frac{1}{2}$),且△ABP的面积与△ABC的面积相等,求a的值

查看答案和解析>>

同步练习册答案