精英家教网 > 初中数学 > 题目详情

【题目】如图所示,正六边形的边长为,点点出发沿运动至点,点是点关于直线对称的点.

)点从点运动至过程中,下列说法正确的有__________.(填序号)

①当点运动到时,线段长为

②点沿直线从运动到

③点沿圆弧从运动到

)点从点运动至的过程中,点的距离的最小值是__________

【答案】 ①③

【解析】(1)如图,设O是正六边形的中心,连接OBACK,解直角三角形求出AC,B′的运动轨迹是图中红色的弧线BF,由此即可周长判断.

(2)连接AE与弧BF交于点B′,此时EB′最短。

(1)如图,设O是正六边形的中心,连接OBACK.

RtCBK,

∵∠BKC=90°,BC=1,BCK=30°

∴BK=BC=

∴AC=2KC=2=

∵点P从点B运动至D过程中,AB=AB

∴点B的运动轨迹是图中红色的弧线BF

①③正确,

故答案为①③.

(2)连接AE与弧BF交于点B′,此时EB最短,

EB′=AEAB′=ACAB=1,

故答案为:1.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知是等边三角形的外接圆,点在圆上,在的延长线上有一点,使,.

(1)求证:的切线;

(2)求证:.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点AACx轴交抛物线于点C,AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.

(1)求抛物线的解析式;

(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;

(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市在元旦期间对顾客实行优惠,规定一次性购物优惠办法:

少于200元,不予优惠;高于200元但低于500元时,九折优惠;消费500元或超过500元时,其中500元部分给予九折优惠,超过500元部分给予八折优惠.根据优惠条件完成下列任务:

1)王老师一次性购物600元,他实际付款多少元?

2)若顾客在该超市一次性购物x元,当x小于500但不小于200时,他实际付款0.9x,当x大于或等于500元时,他实际付款多少元?(用含x的代数式表示)

3)如果王老师两次购物货款合计820元,第一次购物的货款为a元(200a300),用含a的式子表示王老师两次购物实际付款多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是

A. BC=AC B. CFBF C. BD=DF D. AC=BF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,ABAC=5,BC=6,若点P在边AC上移动,则BP的最小值是(  )

A. 5 B. 6 C. 4 D. 4.8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,MN分别是边ADBC的中点,EF分别是边BMCM的中点,当ABAD满足什么条件时,四边形MENF是正方形?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,正方形ABCD中,点O是对角线AC的中点,点P是线段AO上(不与AO重合)的一个动点,过点PPEPBPE交边CD于点E

(1)求证:PBPE

(2)过点EEFAC于点F,如图2.若正方形ABCD的边长为2,则在点P运动的过程中,PF的长度是否发生变化?若不变,请直接写出这个不变的值;若变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:∠AOB90°,OC平分∠AOB,点P在射线OC上.点E在射线OA上,点F在射线OB上,且∠EPF90°.

1)如图1,求证:PEPF

2)如图2,作点F关于直线EP的对称点F′,过F′点作FHOFH,连接EF′,FHEP交于点M.连接FM,图中与∠EFM相等的角共有   个.

查看答案和解析>>

同步练习册答案