把下列各式分解因式:
(1)a4+64b4;
(2)x4+x2y2+y4;
(3)x2+(1+x)2+(x+x2)2;
(4)(c-a)2-4(b-c)(a-b);
(5)x3-9x+8;
(6)x3+2x2-5x-6
解:(1)a4+64b4
=a4+64b4+16a2b2-16a2b2
=(a2+8b2)2-(4ab)2
=(a2+8b2-4ab)(a2+8b2+4ab);
(2)x4+x2y2+y4;
=x4+2x2y2+y4-x2y2
=(x2+y2)2-(xy)2
=(x2+y2-xy)(x2+y2+xy);
(3)x2+(1+x)2+(x+x2)2
=1+2(x+x2)+(x+x2)2
=(1+x+x2)2;
(4)设b-c=x,a-b=y,则c-a=-(x+y),
则(c-a)2-4(b-c)(a-b)
=[-(x+y)]2-4xy,
=(x-y)2,
所以(c-a)2-4(b-c)(a-b)
=(b-c-a+b)2
=(2b-a-c)2;
(5)x3-9x+8;
=x3-x-8x+8
=(x3-x)-(8x-8)
=x(x2-1)-8(x-1)
=x(x+1)(x-1)-8(x-1)
=(x-1)(x2+x-8);
(6)x3+2x2-5x-6
=x3+x2+x2+x-6x-6,
=(x3+x2)+(x2+x)-(6x+6)
=x2(x+1)+x(x+1)-6(x+1)
=(x+1)(x2-x-6)
=(x+1)(x+3)(x-2).
分析:(1)先对所给多项式进行变形,a4+64b4=a4+64b4+16a2b2-16a2b2,前三项是完全平方式,然后先套用公式a2±2ab+b2=(a±b)2进行变形,再套用公式a2-b2=(a+b)(a-b),进一步分解因式.
(2)先对所给多项式进行变形,x4+x2y2+y4=x4+2x2y2+y4-x2y2,然后先套用公式a2±2ab+b2=(a±b)2进行变形,再套用公式a2-b2=(a+b)(a-b),进一步分解因式.
(3)先对所给多项式进行变形,x2+(1+x)2+(x+x2)2=1+2(x+x2)+(x+x2)2,将x+x2看作一个整体,套用公式a2±2ab+b2=(a±b)2进行进一步因式分解即可.
(4)设b-c=x,a-b=y,则c-a=-(x+y),则原式变为:(c-a)2-4(b-c)(a-b)=[-(x+y)]2-4xy,再进一步变形分解因式即可.
(5)应用拆项法,将原式变形为:x3-9x+8=x3-x-8x+8,然后分组分解.
(6)先将原式变形,x3+2x2-5x-6=x3+x2+x2+x-6x-6,然后分组分解.
点评:本题综合考查了因式分解的方法,解题的关键是适当添项、拆项,然后运用公式进行进一步分解因式,注意分解要彻底.