(1)证明:设AG交MN于O,则
∵A、G关于BM对称,
∴AO=GO,AG⊥MN.
∵E、F分别是矩形ABCD中AB、CD的中点,
∴AE=BE,AE∥DF且AE=DF,AD∥EF∥BC.
∴MO:ON=AO:OG=1:1.
∴MO=NO.
∴AG与MN互相平分且互相垂直.
∴四边形ANGM是菱形.
(2)解:连接AF,
∵AD∥EF∥BC,
∴∠PAF=∠AFE,∠EFB=∠FBC.
又∵EF⊥AB,AE=BE,
∴AF=BF,
∴∠AFE=∠EFB.
∴∠PAF=∠AFE=∠EFB=∠FBC.
∴∠PFB=∠PFA+∠AFE+∠EFB=∠PFA+2∠FBC=3∠FBC.
∴∠PFA=∠FBC=∠PAF.
∴PA=PF.
∴在Rt△PFD中,根据勾股定理得:PA=PF=
,
解得:PA=
.
分析:(1)设AG交MN于O,由题意易得AO=GO,AG⊥MN,要证四边形ANGM是菱形,还需证明OM=ON,又可证明AD∥EF∥BC.∴MO:ON=AO:OG=1:1,∴MO=NO;
(2)连接AF,由题意可证得∠PFA=∠FBC=∠PAF,∴PA=PF,∴PA=
,求得PA=
.
点评:本题主要考查菱形和平行四边形的识别及推理论证能力.对角线互相垂直平分的四边形是菱形.