精英家教网 > 初中数学 > 题目详情
18.计算:(-2)2016+(-2)2017所得的结果是(  )
A.-2B.2C.-22016D.22016

分析 直接提取公因式(-2)2016,进而提取公因式得出答案.

解答 解:(-2)2016+(-2)2017
=(-2)2016×(1-2)
=-22016
故选:C.

点评 此题主要考查了提取公因式的应用,正确找出公因式是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

5.若(a-2)2+|b+3|=0,则(a+b)2017=-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.阅读下面的文字,解答问题:
大家知道$\sqrt{2}$是无理数,而无理数是无限不循环小数,因此$\sqrt{2}$的小数部分我们不可能全部地写出来,于是小明用$\sqrt{2}$-1来表示$\sqrt{2}$的小数部分,你同意小明的表示方法吗?
事实上,小明的表示方法是有道理的,因为$\sqrt{2}$的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵$\sqrt{4}$<$\sqrt{7}$<$\sqrt{9}$,即2<$\sqrt{7}$<3,∴$\sqrt{7}$的整数部分为2,小数部分为($\sqrt{7}$-2).
根据以上提示回答下列问题:
(1)如果$\sqrt{5}$的小数部分为a,$\sqrt{13}$的整数部分为b,求(a-b)2-b(a+1)的立方根;
(2)若-$\sqrt{5}$=x+y,其中x是整数,且0<y<1,求x、y的值;
(3)在(1)(2)的条件下求(x-a)(1-b+y)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.直线y=-$\frac{1}{2}$x+2分别交x轴、y轴于A、B两点,点0为坐标原点,则S△AOB=4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知:M(4,4),N(-2,-2),在横轴上存在点P,使PM=PN.求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.阅读下面材料:小明遇到这样一个问题:如图1,在△ABC中,DE∥BC分别交AB于D,交AC于E,已知CD⊥BE,CD=2,BE=3,求BC+DE的值.
小明发现,过点E作EF∥DC,交BC延长线于点F,构造△BEF,经过推理和计算能够使问题得到解决(如图2).
(1)请按照上述思路完成小明遇到的这个问题.
(2)参考小明思考问题的方法,解决问题:
如图3,已知?ABCD和矩形ABEF,AC与DF交于点G,AC=BF=DF,求∠DGC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在平面直角坐标系中,有一Rt△ABC,且点A(-1,3),B(-3,-1),C(-3,3),已知△A1AC1是由△ABC旋转得到的.
(1)旋转中心的坐标是O(0,0),旋转角的度数是90°.
(2)以(1)中的旋转中心为中心,分别画出△A1AC1顺时针旋转90°,180°的三角形.
(3)利用变换前后所形成的图案,可以证明的定理是勾股定理.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.本题两小题
(1)9$\sqrt{3}$+7$\sqrt{12}$-5$\sqrt{48}$+2$\sqrt{\frac{1}{3}}$
(2)$\sqrt{48}$÷$\sqrt{3}$-2$\sqrt{\frac{1}{5}}$×$\sqrt{30}$+(2$\sqrt{2}$+$\sqrt{3}$)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.请认真观察图形,解答下列问题:
(1)根据图中条件,你能得到怎样的等量关系?请用等式表示出来;
(2)如果图中的a,b(a>b)满足a2+b2=57,ab=12,求a+b的值;
(3)已知(5+2x)2+(3+2x)2=60,求(5+2x)(2x+3)的值.

查看答案和解析>>

同步练习册答案