精英家教网 > 初中数学 > 题目详情

已知两个同心圆,其中大圆的半径为7,小圆的半径为5,大圆的弦AD与小圆交于点B、C,则AB•BD的值是________.

24
分析:过O作OH⊥CD于H,根据垂径定理:CH=DH,AH=BH,连接OA、OC,根据勾股定理计算即可.
解答:过O作OH⊥CD于H,
根据垂径定理得:CH=DH,AH=BH,
连接OA、OC,
∵AH2=OA2-OH2=49-OH2
CH2=OC2-OH2=25-OH2
∴AD•BD=(AH+HD)(BH-HD),
=(AH+HD)(AH-HD),
=AH2-HD2
=49-OH2-(25-OH2),
=24,
故答案为:24.
点评:本题考查了勾股定理的应用和垂径定理的运用,解题的关键是做垂直,构造直角三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

10、给出下列结论:
①有一个角是100°的两个等腰三角形相似.
②三角形的内切圆和外接圆是同心圆.
③圆心到直线上一点的距离恰好等于圆的半径,则该直线是圆的切线.
④等腰梯形既是轴对称图形,又是中心对称图形.
⑤平分弦的直径垂直于弦,并且平分弦所对的两弧.
⑥过直线外一点有且只有一条直线平行于已知直线.
其中正确命题有(  )个.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1998•广东)已知两个同心圆,其中大圆的半径为7,小圆的半径为5,大圆的弦AD与小圆交于点B、C,则AB•BD的值是
24
24

查看答案和解析>>

科目:初中数学 来源:第26章《圆》好题集(12):26.6 三角形的内切圆(解析版) 题型:选择题

给出下列结论:
①有一个角是100°的两个等腰三角形相似.
②三角形的内切圆和外接圆是同心圆.
③圆心到直线上一点的距离恰好等于圆的半径,则该直线是圆的切线.
④等腰梯形既是轴对称图形,又是中心对称图形.
⑤平分弦的直径垂直于弦,并且平分弦所对的两弧.
⑥过直线外一点有且只有一条直线平行于已知直线.
其中正确命题有( )个.
A.2个
B.3个
C.4个
D.5个

查看答案和解析>>

科目:初中数学 来源:1998年广东省中考数学试卷(解析版) 题型:填空题

已知两个同心圆,其中大圆的半径为7,小圆的半径为5,大圆的弦AD与小圆交于点B、C,则AB•BD的值是   

查看答案和解析>>

同步练习册答案