精英家教网 > 初中数学 > 题目详情

【题目】勾股定理,是几何学中一颗光彩夺目的明珠,被称为几何学的基石.中国是发现和研究勾股定理最古老的国家之一.中国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理.三国时期吴国赵爽创制了勾股圆方图(如图)证明了勾股定理.在这幅勾股圆方图中,大正方形ABCD是由4个全等的直角三角形再加上中间的那个小正方形EFGH组成的.若小正方形的边长是1,每个直角三角形的短的直角边长是3,则大正方形ABCD的面积是_____

【答案】25

【解析】

BF=BE+EF结合“小正方形的边长是1,每个直角三角形的短的直角边长是3”即可得出直角三角形较长直角边的长度,结合三角形的面积公式以及正方形面积公式即可得出结论.

EF=1BE=3

BF=BE+EF=4

S正方形ABCD=4SBCF+S正方形EFGH=4× ×4×3+1×1=25.

故答案为:25.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从地出发,晚上到达地,约定向东为正方向,当天的航行路程记录如下(单位:千米):

1)请你帮忙确定地位于地的什么方向,距离地多少千米?

2)若冲锋舟每千米耗油升,邮箱容量为升,求冲锋舟当天救灾过程中至少还需补充多少升油?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了了解重庆市的空气质量情况,我校初2017级“综合实践环境调查”小组从环境监测网随机抽取了若干天的空气质量作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出):

(1)课题小组随机抽取的天数为_______天,请将条形统计图补充完整;

(2)为找出优化环境的措施,“环境治理研讨小组”的同学欲从天气质量为“中度污染”和“重度污染”的样本中随机抽取两天分析污染原因,请用列表或画树状图的方法求出所抽取的两天恰好都是“重度污染”的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+b的图象分别与x轴,y轴的正半轴分別交于点ABAB=2,∠OAB=45°

1)求一次函数的解析式;

2)如果在第二象限内有一点C(a);试用含有a的代数式表示四边形ABCO的面积,并求出当ABC的面积与ABO的面积相等时a的值;

3)在x轴上,是否存在点P,使PAB为等腰三角形?若存在,请直接写出所有符合条件的点P坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为5,点A的坐标为(﹣40),点By轴上,若反比例函数y=k≠0)的图象过点C,则该反比例函数的表达式为_______

【答案】

【解析】解:如图,过点CCEy轴于E,在正方形ABCD中,AB=BCABC=90°∴∠ABO+CBE=90°∵∠OAB+ABO=90°∴∠OAB=CBEA的坐标为(﹣40),OA=4AB=5OB= =3,在ABOBCE中,∵∠OAB=CBEAOB=BECAB=BC∴△ABO≌△BCEAAS),OA=BE=4CE=OB=3OE=BEOB=43=1C的坐标为(31),反比例函数k≠0)的图象过点Ck=xy=3×1=3反比例函数的表达式为.故答案为:

点睛:本题考查的是反比例函数图象上点的坐标特点,涉及到正方形的性质,全等三角形的判定与性质,反比例函数图象上的点的坐标特征,作辅助线构造出全等三角形并求出点D的坐标是解题的关键.

型】填空
束】
17

【题目】关于x的分式方程=1的解是正数,则m的取值范围是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校计划开设四门选修课:乐器、舞蹈、绘画、书法.为提前了解学生的选修情况,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行了整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:

(1)本次调查的学生共有 人,在扇形统计图中,m的值是

(2)将条形统计图补充完整;

(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】电商时代使得网购更加便捷和普及.小张响应国家号召,自主创业,开了家淘宝店.他购进一种成本为100/件的新商品,在试销中发现:销售单价x(元)与每天销售量y(件)之间满足如图所示的关系.

1)求yx之间的函数关系式;

2)若某天小张销售该产品获得的利润为1200元,求销售单价x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:矩形ABCD中,AB=4,BC=3,点MN分别在边ABCD上,直线MN交矩形对角线 AC于点E,将AME沿直线MN翻折,点A落在点P处,且点P在射线CB.

(1)如图1,当EPBC时,求CN的长;

(2) 如图2,当EPAC时,求AM的长;

(3) 请写出线段CP的长的取值范围,及当CP的长最大时MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点C在线段AB上,点MN分别是ACBC的中点.

(1)AC8 cmCB6 cm,求线段MN的长;

(2)C为线段AB上任一点,满足ACCBa,其他条件不变,你能猜想MN的长度吗?写出你的结论并说明理由;

(3)若点C在线段AB的延长线上,且满足ACBCbMN分别为ACBC的中点,你能猜想MN的长度吗?请画出图.

查看答案和解析>>

同步练习册答案