精英家教网 > 初中数学 > 题目详情

如图所示,AD是△ABC的高,AE是⊙O的直径,且△ABC三个顶点都在⊙O上,求证:AB•AC=AD•AE.

解:连接CE.
由圆周角定理可知,∠B=∠E,
∵∠ADB=∠ACE=90°,∠B=∠E,
∴△ADB∽△ACE.
∴AB:AE=AD:AC,
则AB•AC=AE•AD.
分析:连接CE,两个对应角相等可以证明三角形相似,再根据相似三角形的性质得出比例证明.
点评:考查了圆周角定理和相似三角形的判定与性质,乘积的形式通常可以转化成比例的形式,通过证明三角形相似得出结论.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,AD是△ABC中BC边上的中线,已知△ABC的面积为12,则△ACD的面积等于
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,AD是△ABC的中线,AB=6cm,AC=5cm,求△ABD和△ADC的周长的差.

查看答案和解析>>

科目:初中数学 来源: 题型:

55、如图所示,AD是∠BAC的平分线,DE⊥AB,垂足为E,DF⊥AC,垂足为F,且BD=CD.
求证:BE=CF.

查看答案和解析>>

科目:初中数学 来源: 题型:

26、已知如图所示,AD是△ABC的角平分线,DE∥AC交AB于E,DF∥AB交AC于F,四边形AEDF是菱形吗?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,AD是△ABC的高,AE是⊙O的直径,A,B,C三点都在圆上,∠DAC=30°,则∠BAE为(  )

查看答案和解析>>

同步练习册答案