精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(-2,4),过点A作AB⊥y轴,垂足为B,连接OA.
(1)求B点的坐标;
(2)若抛物线y=-x2+bx+c经过点A、B.
①求抛物线的解析式及顶点坐标;
②将抛物线竖直向下平移m个单位,使平移后得到的抛物线顶点落在△OAB的内部(不包括△OAB的边界),求m的取值范围.
分析:(1)根据点A的坐标是(-2,4),得出B点的坐标即可;
(2)①把点A的坐标(-2,4),B(0,4)代入y=-x2+bx+c中,直接得出抛物线的解析式及顶点坐标;
②利用二次函数的顶点坐标,根据AB的中点E的坐标以及F点的坐标即可得出m的取值范围.
解答:解:(1)∵点A的坐标是(-2,4),AB⊥y轴,
∴AB=2,OB=4,
∴B点的坐标为;(0,4),

(2)①把点A的坐标(-2,4),B点的坐标为;(0,4),
代入y=-x2+bx+c中,
-4-2b+c=4
c=4

解得:
b=-2
c=4

∴抛物线的解析式为:y=-x2-2x+4=-(x+1)2+5,
∴抛物线顶点D的坐标是(-1,5),
②过抛物线的顶点作DE⊥AB于点E,
∵AB的中点为E,A的坐标(-2,4),
∴E的坐标是(-1,4),
∵OA的中点F,
∴F的坐标是(-1,2),
当D点平移到E点时,平移后得到的抛物线顶点落不在△OAB的内部,再继续往下平移正好进入△OAB的内部,
当D点平移到F点时,平移后得到的抛物线顶点落正好不在△OAB的内部,
∴m的取值范围是:1<m<3.
点评:此题主要考查了二次函数的综合应用以及二次函数顶点坐标求法,二次函数的综合应用是初中阶段的重点题型特别注意利用数形结合是这部分考查的重点也是难点同学们应重点掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案