精英家教网 > 初中数学 > 题目详情

如图,AB, AC 是⊙O的两条弦,且AB=AC.延长CA到点D.使AD=AC,连结DB并延长,交⊙O于点E.求证:CE是⊙O的直径.

 

 

【答案】

连接BC,由AB=AC可得∠ACB=∠ABC,由AD=AC可得AD=AB,即可得到∠ABD=∠ADB,再根据三角形的内角和可得∠ABC+∠ABD=90°,从而可以证得结论.

【解析】

试题分析:连接BC

∵AB=AC

∴∠ACB=∠ABC

∵AD=AC

∴AD=AB

∴∠ABD=∠ADB

∵∠ACB+∠ABC+∠ABD+∠ADB=180°

∴∠ABC+∠ABD=90°

∴∠CBE=90°

∴CE是⊙O的直径.

考点:等腰三角形的性质,三角形的内角和,圆周角定理

点评:解答本题的关键是熟练掌握圆周角定理:90°的圆周角所对的弦是直径.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、如图,AB=AC=AD.
(1)如果AD∥BC,那么∠C和∠D有怎样的数量关系?证明你的结论;
(2)如果∠C=2∠D,那么你能得到什么结论?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•虹口区一模)已知:如图,AB=AC,∠DAE=∠B.
求证:△ABE∽△DCA.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•来宾)如图,AB=AC,D,E分别是AB,AC上的点,下列条件中不能证明△ABE≌△ACD的是
(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB=AC,∠C=67°,AB的垂直平分线EF交AC于点D,求∠DBC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB=AC=10,∠A=40°,AB的垂直平分线MN交AC于点D,求:
(1)∠ABD的度数;
(2)若△BCD的周长是m,求BC的长.

查看答案和解析>>

同步练习册答案