精英家教网 > 初中数学 > 题目详情
如图,在四边形ABCD中,∠B=∠D=90°,∠A=60°,AB=4,AD=5,则=______.

【答案】分析:过点C作CE∥AD交AB于点E,再作EF∥CD交AD于点F,在Rt△AEF中,可将各边用含BC和CD的代数式表达出来,根据∠A=60°列出三角函数式代入求解.
解答:解:如图,过点C作CE∥AD交AB于点E,再作EF∥CD交AD于点F,
设BC=a,CD=b,
在Rt△BCE中,∵AD∥CE,
∴∠CEB=∠A=60°,
可得BE=cot∠CEB×BC=a,
CE==
故AE=4-
∵四边形CDFE为矩形,
∴DF=CE=
∴AF=5-
在Rt△AEF中,
∵cos∠A==
=
∴a=
sin∠A==
=
∴b=
∵BC=a=2,CD=b=
=2.
点评:本题通过作辅助线可在直角三角形内进行求解,综合应用了解直角三角形、直角三角形性质,考查了逻辑推理能力和运算能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•赤峰)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;
(3)当t为何值时,△DEF为直角三角形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在四边形ABC中,AD=BC,AB=CD.
求证:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠BAC=90°,将△ABC沿线段BC向右平移得到△DEF,使CE=AE,连结AD、AE、CD,则下列结论:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四边形AECD为菱形,其中正确的共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在四边形ABC中,AD=BC,AB=CD.
求证:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中数学 来源:浙江省同步题 题型:证明题

已知:如图,在四边形ABC中,AD=BC,AB=CD.求证:AB∥CD,AD∥BC.

查看答案和解析>>

同步练习册答案