精英家教网 > 初中数学 > 题目详情
23、在△ABC中,AD是BC边上的中线,若△ABD和△ADC的周长之差为4(AB>AC),AB与AC的和为14,求AB和AC的长.
分析:根据三角形中线的定义,BD=CD.所以△ABD和△ADC的周长之差也就是AB与AC的差,然后联立关于AB、AC的二元一次方程组,利用加减消元法求解即可.
解答:解:∵AD是BC边上的中线,
∴BD=CD,
∴△ABD的周长-△ADC的周长=(AB+AD+BD)-(AC+AD+CD)=AB-AC=4,(2分) 
即AB-AC=4①,
又AB+AC=14②,
①+②得.2AB=18,
解得AB=9,
②-①得,2AC=10,
解得AC=5,
∴AB和AC的长分别为:AB=9,AC=5.(4分)
点评:本题考查了三角形的中线定义,二元一次方程组的求解,根据周长的差得出边AB与AC的差等于4是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网在△ABC中,AD是高,矩形PQMN的顶点P、N分别在AB、AC上,QM在边BC上.若BC=8cm,AD=6cm,且PN=2PQ,求矩形PQMN的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AD是BC上的中线,BC=4,∠ADC=30°,把△ADC沿AD所在直线翻折后点C落在点C′的位置,那么点D到直线BC′的距离是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AD是BC边上的高,tanC=
1
2
,AC=3
5
,AB=4
.求BD的长.(结果保留根号)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•温州二模)如图,在△ABC中,AD是它的角平分线,∠C=90°,E在AB边上,以AE为直径的⊙O交BC于点D,交AC于点F.
(1)求证:BC是⊙O的切线;
(2)已知∠B=30°,AD的弦心距为1,求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AD是∠BAC的平分线,DE、DF分别是△ABD和△ACD的高线,求证:AD⊥EF.

查看答案和解析>>

同步练习册答案