分析 (1)分子分母同时乘$\sqrt{n+1}-\sqrt{n}$,求解即可,
(2)先化简,再找出规律求解即可.
解答 解:(1)$\frac{1}{\sqrt{n+1}+\sqrt{n}}$(n为正整数)=$\sqrt{n+1}-\sqrt{n}$.
故答案为:$\sqrt{n+1}-\sqrt{n}$.
(2)$\frac{1}{1+\sqrt{2}}$+$\frac{1}{\sqrt{2}+\sqrt{3}}$+$\frac{1}{\sqrt{3}+\sqrt{4}}$+…+$\frac{1}{\sqrt{2013}+\sqrt{2014}}$+$\frac{1}{\sqrt{2014}+\sqrt{2015}}$
=$\sqrt{2}$-1+$\sqrt{3}$-$\sqrt{2}$+$\sqrt{4}$-$\sqrt{3}$+…+$\sqrt{2015}$-$\sqrt{2014}$,
=$\sqrt{2015}$-1.
点评 本题主要考查了分母有理化,解题的关键是找出式子的规律.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com