精英家教网 > 初中数学 > 题目详情

如图,现有边长为a的正方形纸片1张、边长为b的正方形纸片2张,边长分别为a,b的长方形纸片3张,把它们拼成一个长方形.请利用此拼图中的面积关系,分解因式:a2+3ab+2b2=________.

(a+b)(a+2b)
分析:根据图示可看出大长方形是由2个边长为b的正方形,1个边长为a的小正方形和3个长为b宽为a的小长方形组成,所以用它的面积的两种求法作为相等关系即可表示为a2+3ab+2b2=(a+2b)(a+b).
解答:a2+3ab+2b2=(a+2b)(a+b).
点评:主要考查了分解因式与几何图形之间的联系,从几何的图形来解释分解因式的意义.解此类题目的关键是正确的分析图形,找到组成图形的各个部分,并用面积的两种求法作为相等关系列式子.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,现有边长为a的正方形纸片1张、边长为b的正方形纸片2张,边长分别为a,b的长方形纸片3张,把它们拼成一个长方形.请利用此拼图中的面积关系,分解因式:a2+3ab+2b2=
(a+b)(a+2b)

查看答案和解析>>

科目:初中数学 来源: 题型:

16、如图,现有边长为a的正方形纸片1张、边长为b的正方形纸片2张,边长分别为a,b的长方形纸片3张,把它们拼成一个长方形.请利用此拼图中的面积关系,分解因式:a2+3ab+2b2=
(a+b)(a+2b)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:等腰三角形ABC的两腰AC和BC长为5厘米,底边AB长为6厘米,如图,现有一长为1厘米的线段MN在△ABC的底边AB上沿AB方向以1厘米/秒的速度向B点运动(运动开始时,点M与点A重合,点N到达点B时运动终止),过点M、N分别作AB边的垂线,与△ABC的其它边交于P、Q两点,线段MN运动的时间为t秒.
(1)t=
2
2
时,Q点与C重合;此时PM=
8
3
8
3
厘米;
(2)线段MN在运动的过程中,t为何值时,四边形MNQP恰为矩形?并求出该矩形的面积;
(3)线段MN在运动的过程中,四边形MNQP的面积为S,运动的时间为t.求P、Q两点都在AC边上时四边形MNQP的面积S随运动时间t变化的函数关系式;
(4)简要说明从运动开始到终止四边形MNQP的面积S是如何变化的.

查看答案和解析>>

科目:初中数学 来源:数学教研室 题型:044

如图,现有边长为a的正方形花布,问应怎样裁剪,才能得到一个面积最大的正八边形花布?

 

查看答案和解析>>

同步练习册答案