【题目】如图,在Rt△ABC中,∠ABC=90°,
(1)①作∠BCA的平分线,交AB于点O(用尺规作图法,保留作图痕迹,不要求写作法).
②以O为圆心,OB为半径作圆.
(2)在你所作的图中,AC与⊙O的位置关系是
(3)在(1)的条件下,若BC=6,AB=8,求⊙O的半径.
【答案】(1) ①CO即为所求,②⊙O即为所求;(2) 相切;(3) 3
解:(1)①如图所示:CO即为所求;
②如图所示:⊙O即为所求;
(2)根据点O到AC的距离等于OB长,可知AC与⊙O的位置关系是:相切;
故答案为:相切;
(3)过点O连接AC与⊙O的切点E,
∵BC=6,AB=8,∠ABC=90°,
,
由题意可得:CB是⊙O的切线,则CE=CB=6,
设BO=x,则EO=x,AO=6﹣x,
AE=10﹣6=4,
∵在Rt△AOE中,AE2+EO2=AO2,
∴42+x2=(8﹣x)2,
解得:x=3,
∴⊙O的半径为3.
【解析】试题分析:(1)①根据角平分线的做法得出即可;②利用以O为圆心,OB为半径作圆直接得出即可;
(2)根据切线的判定方法直接得出即可;
(3)利用切线长定理以及勾股定理求出⊙O的半径即可.
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数y1=k1x+6与反比例函数y2=相交于A、B,与x轴交于点C,过点B作BD⊥x轴于点D,已知sin∠DBC=,OC:CD=3:1.
(1)求y1和y2的解析式;
(2)连接OA,OB,求△AOB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=-x+60(30≤x≤60).
设这种双肩包每天的销售利润为w元.
(1)求w与x之间的函数解析式;
(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?
(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某个观测站测得:空气中pm2.5含量为每立方米0.0000023g,则将0.0000023用科学记数法表示为( )
A. 2.3×10﹣7 B. 2.3×10﹣6 C. 2.3×10﹣5 D. 2.3×10﹣4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知O为直线MN上一点,OP⊥MN,在等腰Rt△ABO中, ,AC∥OP交OM于C,D为OB的中点,DE⊥DC交MN于E.
(1) 如图1,若点B在OP上,则①AC OE(填“<”,“=”或“>”);②线段CA、CO、CD满足的等量关系式是 ;
(2) 将图1中的等腰Rt△ABO绕O点顺时针旋转(),如图2,那么(1)中的结论②是否成立?请说明理由;
(3) 将图1中的等腰Rt△ABO绕O点顺时针旋转(),请你在图3中画出图形,并直接写出线段CA、CO、CD满足的等量关系式 ;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读:如图1,在△ABC中,BE是AC边上的中线, D是BC边上的一点,CD:BD=1:2,AD与BE相交于点P,求的值.小昊发现,过点A作AF∥BC,交BE的延长线于点F,通过构造△AEF,经过推理和计算能够使问题得到解决(如图2).
(1)的值为 ;
(2)参考小昊思考问题的方法,解决问题:
如图3,在△ABC中,∠ACB=90°,点D在BC的延长线上,AD与AC边上的中线BE的延长线交于点P,DC:BC:AC=1:2:3 .
求 的值;
若CD=2,求BP的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com