精英家教网 > 初中数学 > 题目详情

【题目】如图,矩形中,对角线相交于点,过点,过点,两线相交于点

1)求证:

2)连接,交于点,若于点,求的度数.

【答案】1)见解析;(2120°

【解析】

1)根据矩形的性质可得AC=BDOA=OC=ACOB=OD=BD,从而得出OA=OB,然后根据菱形的判定定理可证四边形OANB为菱形,从而得出结论;

2)根据菱形的性质可得BN=OB=BD,然后根据锐角三角函数求出∠NBD=60°,然后根据平行线的性质和平角的定义即可求出结论.

1)证明:∵四边形ABCD为矩形

AC=BDOA=OC=ACOB=OD=BD

OA=OB

∴四边形OANB为平行四边形

OA=OB

∴四边形OANB为菱形

2)∵四边形OANB为菱形

BN=OB=BD

cosNBD=

∴∠NBD=60°

∴∠DOA=NBD=60°

=180°-∠DOA=120°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.

(1)甲、乙两队单独完成此项任务各需多少天?

(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中学生上学带手机的现象越来越受到社会的关注,为此媒体记者随机调查了某校若干名学生上学带手机的目的,分为四种类型:A接听电话;B收发短信;C查阅资料;D游戏聊天.并将调查结果绘制成图1和图2的统计图(不完整),请根据图中提供的信息,解答下列问题:

(1)此次抽样调查中,共调查了   名学生;

(2)将图1、图2补充完整;

(3)现有4名学生,其中A类两名,B类两名,从中任选2名学生,求这两名学生为同一类型的概率(用列表法或树状图法).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】佳润商场销售两种品牌的教学设备,这两种教学设备的进价和售价如表所示:

进价(万元/套)

1.5

1.2

售价(万元/套)

1.65

1.4

该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获 毛利润9万元.

1)该商场计划购进两种品牌的教学设备各多少套?

2)通过市场调研,该商场决定在原计划的基础上,减少种设备的购进数量,增加种设备的购进数量,已知种设备增加的数量 种设备减少的数量的1.5倍.若用于购进这两种教学设备的 总资金不超过69万元,问种设备购进数量至多减少多少套?

3)在(2)的条件下,该商场所能获得的最大利润是多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校有名学生,为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的形式,随机调查了该校部分学生的主要上学方式(参与问卷调查的学生只能从以下六个种类中选择一类),并将调查结果绘制成如下不完整的统计图.

根据以上信息,回答下列问题:

1)参与本次问卷调查的学生共有_____人,其中选择类的人数有_____人;

2)在扇形统计图中,求类对应的扇形圆心角的度数,并补全条形统计图;

3)若将这四类上学方式视为“绿色出行”,请估计该校选择“绿色出行”的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着我国经济社会的发展,人民对于美好生活的追求越来越高.某社区为了了解家庭对于文化教育的消费悄况,随机抽取部分家庭,对每户家庭的文化教育年消费金额进行问卷调査,根据调查结果绘制成两幅不完整的统计图表.

请你根据统计图表提供的信息,解答下列问题:

组別

家庭年文化教育消费金额x(元)

户数

A

x≤5000

36

B

5000<x≤10000

m

C

10000<x≤15000

27

D

15000<x≤20000

15

E

x>20000

30

(1)本次被调査的家庭有__________户,表中 m=__________;

(2)本次调查数据的中位数出现在__________组.扇形统计图中,D组所在扇形的圆心角是__________度;

(3)这个社区有2500户家庭,请你估计家庭年文化教育消费10000元以上的家庭有多少户?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平行四边形中,对角线交于点从点出发,沿方向匀速运动,速度为;同时,点从点出发,沿方向匀速运动,速度为;当一个点停止运动时,另一个点也停止运动.连接,过点,设运动时间为

解答下列问题:

(1)当为何值时是等腰三角形?

(2)设五边形面积为,试确定的函数关系式;

(3)在运动过程中,是否存在某一时刻,使?若存在,求出的值;若不存在,请说明理由;

(4)在运动过程中,是否存在某一时刻使得平分,若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC内接于⊙O,且ABAC,点D⊙O上,AD⊥AB于点A AD BC交于点EFDA的延长线上,且AFAE

(1)求证:BF⊙O的切线;

(2)AD4,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数的图象交轴于两点,交轴于点,点的坐标为,顶点的坐标为

(1)求二次函数的解析式和直线的解析式;

(2)点是直线上的一个动点,过点轴的垂线,交抛物线于点,当点在第一象限时,求线段长度的最大值;

(3)在抛物线上是否存在异于的点,使边上的高为,若存在求出点的坐标;若不存在请说明理由.

查看答案和解析>>

同步练习册答案