如图,AB是大半圆O的直径,AO是小半圆M的直径,点P是大半圆O上一点,PA与小半圆M交于点C,过点C作CD⊥OP于点D.
(1)求证:CD是小半圆M的切线;
(2)若AB=8,点P在大半圆O上运动(点P不与A,B两点重合),设PD=x,CD2=y.
①求y与x之间的函数关系式,并写出自变量x的取值范围;
②当y=3时,求P,M两点之间的距离.
解:(1)连接CO、CM,如图1所示.
∵AO是小半圆M的直径,
∴∠ACO=90°即CO⊥AP.
∵OA=OP,
∴AC=PC.
∵AM=OM,
∴CM∥PO.
∴∠MCD=∠PDC.
∵CD⊥OP,
∴∠PDC=90°.
∴∠MCD=90°即CD⊥CM.
∵CD经过半径CM的外端C,且CD⊥CM,
∴直线CD是小半圆M的切线.
(2)①∵CO⊥AP,CD⊥OP,
∴∠OCP=∠ODC=∠CDP=90°.
∴∠OCD=90°﹣∠DCP=∠P.
∴△ODC∽△CDP.
∴.
∴CD2=DP•OD.
∵PD=x,CD2=y,OP=AB=4,
∴y=x(4﹣x)=﹣x2+4x.
当点P与点A重合时,x=0;当点P与点B重合时,x=4;
∵点P在大半圆O上运动(点P不与A,B两点重合),
∴0<x<4.
∴y与x之间的函数关系式为y=﹣x2+4x,
自变量x的取值范围是0<x<4.
②当y=3时,﹣x2+4x=3.
解得:x1=1,x2=3.
Ⅰ.当x=1时,如图2所示.
在Rt△CDP中,
∵PD=1,CD=.
∴tan∠CPD==,
∴∠CPD=60°.
∵OA=OP,
∴△OAP是等边三角形.
∵AM=OM,
∴PM⊥AO.
∴PM=
=
=2.
Ⅱ.当x=3时,如图3所示.
同理可得:∠CPD=30°.
∵OA=OP,
∴∠OAP=∠APO=30°.
∴∠POB=60°
过点P作PH⊥AB,垂足为H,连接PM,如图3所示.
∵sin∠POH===,
∴PH=2.
同理:OH=2.
在Rt△MHP中,
∵MH=4,PH=2,
∴PM=
=
=2.
综上所述:当y=3时,P,M两点之间的距离为2或2.
科目:初中数学 来源: 题型:
数在线A、B、C三点所代表的数分别是a、1、c,且 | c-1 |-| a-1 |=| a-c |。若下列选项
中,有一个表示A、B、C三点在数在线的位置关系,则此选项为何?
查看答案和解析>>
科目:初中数学 来源: 题型:
如图(+二),△ABC中,D、E两点分别在、上,且为ÐBAC的角平分线。若ÐABE=ÐC,:=2:1,则△BDE与△ABC的面积比为何?
(A) 1:6 (B) 1:9 (C) 2:13 (D) 2:15
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在△ABC中,AB=BC,点点D在AB的延长线上.
(1)利用尺规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法).
①作∠CBD的平分线BM;
②作边BC上的中线AE,并延长AE交BM于点F.
(2)由(1)得:BF与边AC的位置关系是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
一次英语测试后,随机抽取九年级某班5名学生的成绩如下:91,78,98,85,98.关于这组数据说法正确的是( )
| A. | 中位数是91 | B. | 平均数是91 | C. | 众数是91 | D. | 极差是78 |
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,抛物线y=﹣x2+x﹣2交x轴于A,B两点(点A在点B的左侧),交y轴于点C,分别过点B,C作y轴,x轴的平行线,两平行线交于点D,将△BDC绕点C逆时针旋转,使点D旋转到y轴上得到△FEC,连接BF.
(1)求点B,C所在直线的函数解析式;
(2)求△BCF的面积;
(3)在线段BC上是否存在点P,使得以点P,A,B为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com