精英家教网 > 初中数学 > 题目详情
15.如图,在菱形ABCD中,E是AB的中点,且DE⊥AB,AB=10,则∠ABC=120°,对角线AC的长为10$\sqrt{3}$.

分析 由在菱形ABCD中,E是AB的中点,且DE⊥AB,可证得AE=$\frac{1}{2}$AD,即可求得∠ADE=30°,继而求得答案;连接BD,交AC于点O,易得AC⊥BD,由勾股定理,即可求得答案.

解答 解:∵四边形ABCD是菱形,
∴AB=BC=CD=DA,AD∥BC,
∵E是AB的中点,且DE⊥AB,
∴AE=$\frac{1}{2}$AD,
∴sin∠ADE=$\frac{1}{2}$,
∴∠ADE=30°,
∴∠DAE=60°,
∵AD∥BC,
∴∠ABC=180°-60°=120°;
连接BD,交AC于点O,
在菱形ABCD中,∠DAE=60°,
∴∠CAE=30°,AB=10,
∴OB=5,
根据勾股定理可得:AO=$\sqrt{A{B}^{2}-O{B}^{2}}$=5$\sqrt{3}$,
即AC=10$\sqrt{3}$.
故答案为:120°;10$\sqrt{3}$.

点评 此题考查了菱形的性质以及勾股定理.关键是掌握菱形的两条对角线互相垂直,菱形的四条边都相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.先化简,再求值:(a+2b)(a-b)+(2a-b)2-5a(a-b),其中a=-1,b=2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.在等式y=x2+bx+c中,当x=-1时,y=0;当x=1时,y=-4.求(b-c)2017的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.解分式方程:$\frac{3}{{x}^{2}-9}$=1+$\frac{x}{3-x}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知:如图,AB∥CD,AB,CD与直线EF分别相交于点M和N,MP平分∠AMF,NQ平分∠DNE.求证:MP∥NQ.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.如图,直线l是菱形ABCD和矩形EFGH的对称轴,点C在EF边上,若菱形ABCD沿直线l从左向右匀速运动直至点C落在GH边上停止运动.能反映菱形进入矩形内部的周长y与运动的时间x之间关系的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,请看下面的案例.
Ⅰ、如图1,已知△ABC,分别以AB、AC为边,在BC同侧作等边三角形ABD和等边三角形ACE,连接CD,BE.
(1)通过证明△ADC≌△ABE,可以得到DC=BE;
Ⅱ、如图2,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点,顺次连接E、F、G、H,得到四边形EFGH,我们称四边形EFGH为四边形ABCD的中点四边形,连接BD,利用三角形中位线的性质,可得EH∥BD,EH=$\frac{1}{2}$BD,同理可得FG∥BD,FG=$\frac{1}{2}$BD,所以EH∥FG,EH=FG,所以四边形EFGH是平行四边形;
拓展应用
(2)如图3,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想四边形EFGH的形状,并证明;
(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,四边形EFGH的形状是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,AB∥CD,∠EFG=∠EGF,∠BGF=146°,则∠1的度数为68°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.现有五张正面图形分别是平行四边形、圆、等边三角形、正五边形、菱形的卡片,它们除正面图形不同,其它完全相同.将它们背面朝上洗匀后,从中随机抽取一张卡片,卡片的正面图形既是中心对称图形又是轴对称图形的概率是$\frac{2}{5}$.

查看答案和解析>>

同步练习册答案