精英家教网 > 初中数学 > 题目详情
精英家教网如图:已知△ABC∽△ADE,AD=6cm,DB=3cm,BC=9.9cm,∠A=70°,∠B=50°
求:(1)∠ADE的大小;
(2)求∠AED的大小;
(3)求DE的长.
分析:(1)由于△ABC∽△ADE,那么∠ADE=∠B=50°;
(2)由于∠A=70°,∠B=50°,易求∠C,而△ABC∽△ADE,于是∠AED=∠C=60°;
(3)由于AD=6,DB=3,那么AB=9,而△ABC∽△ADE,可得DE:BC=AD:AB,进而可求DE.
解答:解:(1)∵△ABC∽△ADE,
∴∠ADE=∠B=50°;

(2)∵∠A=70°,∠B=50°,
∴∠C=60°,
∵△ABC∽△ADE,
∴∠AED=∠C=60°;

(3)∵AD=6,DB=3,
∴AB=9,
∵△ABC∽△ADE,
∴DE:BC=AD:AB,
∴DE=
9.9×6
9
=6.6.
点评:本题考查了相似三角形的性质、三角形内角和定理.解题的关键是灵活运用相似三角形的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知△ABC的三个顶点分别为A(2,3)、B(3,1)、C(-2,-2).
(1)请在图中作出△ABC关于直线x=-1的轴对称图形△DEF(A、B、C的对应点分别是D、E、F),并直接写出D、E、F的坐标;
(2)求四边形ABED的面积.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

24、如图,已知△ABC和△CDE均为等边三角形,且点B、C、D在同一条直线上,连接AD、BE,交CE和AC分别于G、H点,连接GH.
(1)请说出AD=BE的理由;
(2)试说出△BCH≌△ACG的理由;
(3)试猜想:△CGH是什么特殊的三角形,并加以说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC,∠ACB=90°,AC=BC,点E、F在AB上,∠ECF=45°.
(1)求证:△ACF∽△BEC;
(2)设△ABC的面积为S,求证:AF•BE=2S;
(3)试判断以线段AE、EF、FB为边的三角形的形状并给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

17、(1)已知线段a,h,用直尺和圆规作等腰三角形ABC,底边BC=a,BC边上的高为h(要求尺规作图,不写作法和证明)
(2)如图,已知△ABC,请作出△ABC关于X轴对称的图形.并写出A、B、C关于X轴对称的点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,已知△ABC是锐角三角形,且∠A=50°,高BE、CF相交于点O,求∠BOC的度数.

查看答案和解析>>

同步练习册答案