精英家教网 > 初中数学 > 题目详情
精英家教网已知,在Rt△ABC中,∠C=90°,∠A=30°,CD是AB边的中线,若将△ABC沿CD折叠,使CA到CA′的位置,连接A′B.
(1)求证:四边形A'BCD是菱形;
(2)若BC=2,试求四边形A′BCD是菱形的面积S.
分析:(1)要证四边形A′BCD为菱形,则要通过题中的条件DA′∥CB和四边相等,(2)求出菱形两对角线的长,根据面积=两对角线乘积的一半算出面积.
解答:解:(1)∵∠ACB=90°,∠A=30°,
∴BC=
1
2
AB.
又CD是斜边AB的中线,
∴CD=AD=
1
2
AB=BD.
∴BC=AD=CD=BD,
∴∠DCB=60°,
∴∠A=∠DCA=30°.
∵将△ABC沿CD折叠得△DCA′,
∴DA′=DA=BC,∠DA′C=∠A=30°,∠DCA′=∠DCA=30°,
∴∠A′CB=∠DCB-∠DCA′=60°-30°=30°=∠DA′C,
∴DA′∥CB.∴四边形A′BCD为菱形.(5分)

(2)∵BC=2,∴BD=2,∴A′C=2
3
,∴S=
1
2
×BD×A'C=2
3
.(8分)
点评:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知:在Rt△ABC中,∠ACB=90°,AC=BC=4,M是边AB的中点,E、G分别是边AC、BC上的一点,∠EMG=45°,AC与MG的延长线相交于点F.
(1)在不添加字母和线段的情况下写出图中一定相似的三角形,并证明其中的一对;
(2)连接结EG,当AE=3时,求EG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:在Rt△ABC中,∠C=90°,∠A=30°,b=2
3
,解这个直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知,在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=6cm;D为AC上一点(不与A、C不精英家教网重合),过D作DQ⊥AC(DQ与AB在AC的同侧);点P从D点出发,在射线DQ上运动,连接PA、PC.
(1)当PA=PC时,求出AD的长;
(2)当△PAC构成等腰直角三角形时,求出AD、DP的长;
(3)当△PAC构成等边三角形时,求出AD、DP的长;
(4)在运动变化过程中,△CAP与△ABC能否相似?若△CAP与△ABC相似,求出此时AD与DP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:在Rt△ABC中,∠C=90°,AC=BC,M是AC的中点,连接BM,CF⊥MB,F是垂足,延长CF交AB于点E.求证:∠AME=∠CMB.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC、AB分别交于点D、E,且∠CBD=∠A.
(1)观察图形,猜想BD与⊙O的位置关系:
相切
相切

(2)证明第(1)题的猜想.

查看答案和解析>>

同步练习册答案